hdu 1878 欧拉回路(联通<并查集> + 偶数点)
欧拉回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18576 Accepted Submission(s): 7219
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18576 Accepted Submission(s): 7219
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
Sample Output
1
0
1
0
C/C++:
1 #include <map> 2 #include <queue> 3 #include <cmath> 4 #include <vector> 5 #include <string> 6 #include <cstdio> 7 #include <cstring> 8 #include <climits> 9 #include <iostream> 10 #include <algorithm> 11 #define INF 0x3f3f3f3f 12 using namespace std; 13 const int my_max = 1010; 14 15 int n, m, my_pre[my_max], a, b, my_node[my_max]; 16 17 int my_find(int x) 18 { 19 int n = x; 20 while (n != my_pre[n]) 21 n = my_pre[n]; 22 int i = x, j; 23 while (n != my_pre[i]) 24 { 25 j = my_pre[i]; 26 my_pre[i] = n; 27 i = j; 28 } 29 return n; 30 } 31 32 bool is_eulerian() 33 { 34 for (int i = 1; i <= n; ++ i) 35 if (my_node[i] & 1) return false; 36 int temp = my_find(1); 37 for (int i = 2; i <= n; ++ i) 38 if (my_find(i) != temp) return false; 39 return true; 40 } 41 42 int main() 43 { 44 while (scanf("%d", &n), n) 45 { 46 scanf("%d", &m); 47 memset(my_node, 0, sizeof(my_node)); 48 for (int i = 1; i <= n; ++ i) 49 my_pre[i] = i; 50 51 while (m --) 52 { 53 scanf("%d%d", &a, &b); 54 my_node[a] ++, my_node[b] ++; 55 int n1 = my_find(a), n2 = my_find(b); 56 my_pre[n1] = n2; 57 } 58 59 if (is_eulerian()) printf("1\n"); 60 else printf("0\n"); 61 } 62 return 0; 63 }