nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)
17-单调递增最长子序列
内存限制:64MB
时间限制:3000ms
Special Judge: No
accepted:21
submit:49
题目描述:
求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4
如:dabdbf最长递增子序列就是abdf,长度为4
输入描述:
第一行一个整数0<n<20,表示有n个字符串要处理 随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出描述:
输出字符串的最长递增子序列的长度
样例输入:
3 aaa ababc abklmncdefg
样例输出:
1 3 7
nyoj 17 分析(动态规划):
①、要求整体的最大长度,我们可以从局部的最大长度来考虑;
②、从左到右依次考虑,每遇到一个点就从第一位开始遍历到该点,看以这个点作为前缀是否为最大值
③、状态方程:dp[i] = max(dp[i], d[j] + 1);
步骤:
①、从左到右依次遍历每一个点;
②、在该点基础上再从前到后通过 dp[i] = max(dp[i], d[j] + 1) 得出该点最大的值
核心代码:
1 for(int i = 0; i < n; ++ i) 2 { 3 dp[i] = 1; //初始化每个dp[MAXN]; 4 for(int j = 0; j < i; ++ j) 5 if(s[j] < s[i]) dp[i] = max(dp[i], dp[j] + 1); //找出所有满足条件的s[j] ==> dp[i]最大值 6 ans = max(ans, dp[i]); 7 }
C/C++代码实现(AC):
1 #include <iostream> 2 #include <algorithm> 3 #include <cmath> 4 #include <cstring> 5 #include <cstdio> 6 #include <queue> 7 #include <set> 8 #include <map> 9 #include <stack> 10 11 using namespace std; 12 const int MAXN = 10010; 13 14 int main () 15 { 16 int t; 17 scanf("%d", &t); 18 while(t --) 19 { 20 char s[MAXN]; 21 scanf("%s", s); 22 int len = strlen(s), ans = -0x3f3f3f3f, dp[MAXN]; 23 for(int i = 0; i < len; ++ i) 24 { 25 dp[i] = 1; 26 for(int j = 0; j < i; ++ j) 27 if (s[j] < s[i]) 28 dp[i] = max(dp[i], dp[j] + 1); 29 ans = max(ans, dp[i]); 30 } 31 printf("%d\n", ans); 32 } 33 return 0; 34 }
※nyoj 17分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近
核心代码:
1 cnt = 0; temp[0] = s[0]; 2 for(int i = 1; i < n; ++ i) 3 { 4 if(temp[cnt] < s[i]) temp[++cnt] = s[i] // cnt + 1即为所求 5 else 6 { 7 for(int j = 0; j <= cnt; ++ j) 8 { 9 if(s[i] <= temp[j]) 10 { 11 temp[j] = s[i]; 12 break; 13 } 14 } 15 } 16 }
C/C++代码实现(AC):
1 #include <iostream> 2 #include <algorithm> 3 #include <cmath> 4 #include <cstring> 5 #include <cstdio> 6 #include <queue> 7 #include <set> 8 #include <map> 9 #include <stack> 10 11 using namespace std; 12 const int MAXN = 10010; 13 14 int main () 15 { 16 int t; 17 scanf("%d", &t); 18 while(t --) 19 { 20 char s[MAXN], temp[MAXN]; 21 scanf("%s", s); 22 23 int len = strlen(s), cnt = 0; 24 temp[0] = s[0]; 25 for(int i = 1; i < len; ++ i) 26 { 27 if(temp[cnt] < s[i]) 28 { 29 temp[++cnt] = s[i]; 30 continue; 31 } 32 33 for(int j = 0; j <= cnt; ++ j) 34 { 35 if(s[i] <= temp[j]) 36 { 37 temp[j] = s[i]; 38 break; 39 } 40 } 41 } 42 printf("%d\n", cnt + 1); 43 } 44 return 0; 45 }
Longest Ordered Subsequence
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 60426 | Accepted: 27062 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
※poj 2533 分析(演算法)【推荐】:
①、找出酱紫的序列:从左到右的排列是由ASCⅡ码递增;
②、且每一组相邻的点ASCⅡ之差最小,及就是最为接近.
核心代码:
1 int temp[0] = A[0], cnt = 0; // cnt + 1 即为所求 2 for(int i = 1; i < n; ++ i) 3 { 4 if (temp[cnt] < A[i]) temp[++cnt] = A[i]; 5 else 6 { 7 for(int j = 0; i <= cnt; ++ j) 8 { 9 if(A[i] <= temp[j]) 10 { 11 temp[j] = A[i]; // 保证序列ASCⅡ之和最小化 12 break; 13 } 14 } 15 } 16 }
C/C++代码实现(AC):
1 #include <iostream> 2 #include <algorithm> 3 #include <cstring> 4 #include <cstdio> 5 #include <cmath> 6 #include <stack> 7 #include <map> 8 #include <queue> 9 10 using namespace std; 11 const int MAXN = 10010; 12 int A[MAXN], temp[MAXN]; 13 14 int main() 15 { 16 int n, cnt = 0; 17 scanf("%d", &n); 18 for(int i = 0; i < n; ++ i) 19 scanf("%d", &A[i]); 20 21 temp[0] = A[0]; 22 for(int i = 1; i < n; ++ i) 23 { 24 if(temp[cnt] < A[i]) temp[++ cnt] = A[i]; 25 else 26 { 27 for(int j = 0; j <= cnt; ++ j) 28 { 29 if(A[i] <= temp[j]) 30 { 31 temp[j] = A[i]; 32 break; 33 } 34 } 35 } 36 } 37 printf("%d\n", cnt + 1); 38 return 0; 39 }