图的深度优先遍历和广度优先遍历理解

前言

根据分类,图的搜索分类可以分为

  • BFS和DFS
  • 记忆化搜索(基于深搜)
  • 双向广搜
  • 二分状态搜索
  • 启发式搜索
  • 与或树搜索
  • 博弈树搜索(α-β剪枝)(极大极小过程搜索)
  • A*搜索
  • IDA搜索

先看BFS和DFS,因为这是最基础的搜索策略了,BFS是按照深度进行搜索,DFS则是按照广度进行搜索;

其实只要你理解了树的DFS和BFS,那么图的话,只是在其基础上加了判断结点是否访问过,是否联通而已;

深度优先搜索

简介

先看一幅有向图

可以发现,其遍历的顺序为

0->3->1->2->4

其的概念就是一条路走到黑

图的表示方法包括邻接表,邻接矩阵等,邻接矩阵表示的是用一个二维数组表示图的联通,其中i行j列表示了i结点和j结点的联通情况,如果其为1,说明是联通的,如果其为0,反之;邻接表表示的是一个一维数组,但是数组中每个列表包含着是链表;

看个图加深理解:

其中a是有向图/原图,b是邻接表表示图,c是邻接矩阵表示图;

伪代码

递归实现

1. 访问数组初始化:visited[n] = 0
2. 访问顶点:visited[v] = 1
3. 取v的第一个邻接点w;
4. 循环递归:
	while(w存在)
		if(w未被访问过)
			从顶点w出发递归执行;
		w = v的下一个邻接点;

非递归实现

1. 栈初始化:visited[n] = 0
2. 访问顶点:visited[v] = 1
3. 入栈
4. while(栈不为空)
	x = 栈的顶元素,并且出栈;
	if (存在并找到未被访问的x的邻接点w)
		访问w:visited[w] = 1
		w进栈

上面的寻找下一个邻接点,需要根据图是邻接表还是邻接矩阵进行循环判断;

实现

由于图的表示有几种,所以实现的代码包括了用邻接矩阵的图和邻接表的图;

.h文件

typedef struct edge {
    int vertex;
    struct edge* next;
}Edge;

class DFS {
public:
    DFS();
    ~DFS();

    void Test_M();
    void Test_L();
private:
    // 邻接矩阵
    void createGraph_M(int (*edge)[VERTEXNUM], int start, int end);
    void displayGraph_M(int (*edge)[VERTEXNUM]);
    void DFT_M(int (*edge)[VERTEXNUM], int* vertexStatusArr);
    void DFTCore_M(int (*edge)[VERTEXNUM], int i, int* vertexStatusArr);
    
    // 邻接表
    void createGraph_L(Edge** edge, int start, int end);
    void displayGraph_L(Edge** edge);
    void delGraph_L(Edge** edge);
    void DFT_L(Edge** edge, int* vertextStatusArr);
    void DFTCore_L(Edge** edge, int i, int* vertexStatusArr);
    
};

void DFSTest_M();
void DFSTest_L();

.cpp文件

DFS::DFS() {
    
}

DFS::~DFS() {
    
    
}

/*----------------------------邻接矩阵--------------------------*/
/**
 *  创建图
 *
 *  @param edge <#edge description#>
 */
void DFS::createGraph_M(int (*edge)[VERTEXNUM], int start, int end) {
    edge[start][end] = 1;
}

/**
 *  打印存储的图
 *
 *  @param edge <#edge description#>
 */
void DFS::displayGraph_M(int (*edge)[VERTEXNUM]) {
    for (int i = 0; i < VERTEXNUM; i++) {
        for (int j = 0; j < VERTEXNUM; j++) {
            std::cout << edge[i][j];
        }
        std::cout << std::endl;
    }
}

/**
 *  深度优先遍历
 *
 *  @param edge <#edge description#>
 */
void DFS::DFT_M(int (*edge)[VERTEXNUM], int* vertexStatusArr) {
    for (int i = 0; i < VERTEXNUM; i++) {
        DFTCore_M(edge, i, vertexStatusArr);
    }
    std::cout << std::endl;
}

void DFS::DFTCore_M(int (*edge)[VERTEXNUM], int i, int* vertexStatusArr) {
    if (vertexStatusArr[i] == 1) return; // 顶点访问过则不再访问
    
    std::cout << i << "->";
    vertexStatusArr[i] = 1;
    
    // 存在边的对应关系,才递归
    for (int j = 0; j < VERTEXNUM; j++) {
        if (edge[i][j] == 1) {
            DFTCore_M(edge, j, vertexStatusArr);
        }
    }
}

void DFS::Test_M() {
    std::cout << "--------------邻接矩阵表示-----------------" << std::endl;
    
    //动态创建存放边的二维数组
    int (*edge)[VERTEXNUM] = (int (*)[VERTEXNUM])malloc(sizeof(int) * VERTEXNUM * VERTEXNUM);
    
    for (int i = 0; i < VERTEXNUM; i++) {
        for (int j = 0; j < VERTEXNUM; j++) {
            edge[i][j] = 0;
        }
    }
    
    // 存放顶点的遍历状态;0:未遍历,1:已遍历
    int *vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM*VERTEXNUM);
    for (int i = 0; i < VERTEXNUM; i++) {
        vertexStatusArr[i] = 0;
    }
    
    std::cout << "after init.." << std::endl;
    displayGraph_M(edge);
    
    //创建图
    createGraph_M(edge, 0, 3);
    createGraph_M(edge, 0, 4);
    createGraph_M(edge, 3, 1);
    createGraph_M(edge, 3, 2);
    createGraph_M(edge, 4, 1);
    
    std::cout << "after create.." << std::endl;
    displayGraph_M(edge);
    
    // 遍历
    std::cout << "traversal.." << std::endl;
    DFT_M(edge, vertexStatusArr);
    
    free(edge);
}

/*----------------------------邻接表--------------------------*/
void DFS::createGraph_L(Edge** edge, int start, int end) {
    Edge* nedge = (Edge*)malloc(sizeof(Edge));
    nedge->vertex = end;
    nedge->next = nullptr;
    edge = edge + start;
    while (*edge != nullptr) {
        edge = &((*edge)->next);
    }
    *edge = nedge;
}

void DFS::displayGraph_L(Edge** edge) {
    Edge* nedge;
    int edgeCount = 0;
    for (int i = 0; i < VERTEXNUM; i++) {
        nedge = *(edge + i);
        std::cout << i << ":";
        while (nedge != nullptr) {
            std::cout << nedge->vertex << ",";
            nedge = nedge->next;
            edgeCount++;
        }
        std::cout << std::endl;
    }
    std::cout <<"edge count is " << edgeCount << std::endl;
}

void DFS::delGraph_L(Edge** edge) {
    Edge *p, *del;
    for (int i = 0; i < VERTEXNUM; i++) {
        p = *(edge + i);
        while (p != nullptr) {
            del = p;
            p = p->next;
            free(del);
        }
        edge[i] = nullptr;
    }
    free(edge);
}

void DFS::DFT_L(Edge** edge, int* vertextStatusArr) {
    for (int i = 0; i < VERTEXNUM; i++) {
        DFTCore_L(edge, i, vertextStatusArr);
    }
    std::cout << std::endl;
}

void DFS::DFTCore_L(Edge** edge, int i, int* vertexStatusArr) {
    if (vertexStatusArr[i] == 1) {
        return;
    }
    std::cout << i << "->";
    vertexStatusArr[i] = 1;
    Edge *p = *(edge + i);
    while (p != nullptr) {
        DFTCore_L(edge, p->vertex, vertexStatusArr);
        p = p->next;
    }
}

void DFS::Test_L() {
    std::cout << "--------------邻接表表示-----------------" << std::endl;
    
    // 动态创建存放边的指针数组
    Edge **edge = (Edge**)malloc(sizeof(Edge*)*VERTEXNUM);
    for (int i = 0; i < VERTEXNUM; i++) {
        edge[i] = nullptr;
    }
    
    // 存放顶点的遍历状态:0:未遍历,1:已遍历
    int *vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM);
    for (int i = 0; i < VERTEXNUM; i++) {
        vertexStatusArr[i] = 0;
    }
    
    std::cout << "after init.." << std::endl;
    displayGraph_L(edge);
    
    //创建图
    createGraph_L(edge, 0, 3);
    createGraph_L(edge, 0, 4);
    createGraph_L(edge, 3, 1);
    createGraph_L(edge, 3, 2);
    createGraph_L(edge, 4, 1);
    
    std::cout << "after create.." << std::endl;
    displayGraph_L(edge);
    
    // 深度优先遍历
    DFT_L(edge, vertexStatusArr);
    
    // 释放邻接表占用的内存
    delGraph_L(edge);
    edge = nullptr;
    free(vertexStatusArr);
    vertexStatusArr = nullptr;
}

总结:代码有很强的C的风格,抱歉;这里面主要看遍历过程;

广度优先遍历

简介

先看一幅有向图

可以发现,其遍历的顺序为

0->3->4->1->2

其的概念就是左看看右看看,雨露均沾

伪代码

非递归实现

1. 初始化队列:visited[n] = 0
2. 访问顶点:visited[v] = 1
3. 顶点v加入队列
4. 循环:
	while(队列是否为空)
		v = 队列头元素
		w = v的第一个邻接点
		while(w存在)
			if(如果w未访问)
				visited[w] = 1;
				顶点w加入队列
				w = 顶点v的下一个邻接点

上面的寻找下一个邻接点,是寻找之前结点的下一个邻接点,而不是当前的,否则就变成DFS了;

实现

.h文件

typedef struct bedge {
    int vertex;
    struct bedge* pre;
    struct bedge* next;
}BEdge;

template <class T>
class Queue {
private:
    T *arr;
    int front;
    int rear;
    int size;
    int length;
public:
    Queue();
    ~Queue();
    
    void Push(T value);
    T Pop();
    int Size();
    int Length();
    bool Empty();
    bool Full();
};


class BFS {
private:
    BEdge *front;
    BEdge *rear;
    
public:
    BFS();
    ~BFS();
    
    void Test_M();
    void Test_L();
    
    void createGraph_M(int (*edge)[VERTEXNUM], int start, int end);
    void displayGraph_M(int (*edge)[VERTEXNUM]);
    void BFT_M(int (*edge)[VERTEXNUM], int *vertexStatusArr);
    void BFTCore_M(int (*edge)[VERTEXNUM], int i, int *vertexStatusArr);
    
    void createGraph_L(BEdge** edge, int start, int end);
    void displayGraph_L(BEdge** edge);
    void delGraph_L(BEdge** edge);
    void BFT_L(BEdge** edge, int* vertextStatusArr);
    void BFTCore_L(BEdge** edge, int i, int* vertexStatusArr);
};

void BFSTest_M();
void BFSTest_L();

.cpp文件

template <class T>
Queue<T>::Queue() {
    size = 10;
    arr = new T[size];
    front = rear = length = 0;
}

template <class T>
Queue<T>::~Queue() {
    delete [] arr;
}

template <class T>
void Queue<T>::Push(T value) {
    // 大于原数组长度,创建新数组,赋值给新数组
    if (length == size) {
        int nsize = size * 2;
        int * narr = new T(nsize);
        int i = 0;
        for (; i < length; i++) {
            narr[(front + i) % nsize] = arr[(front + i) % size];
        }
        rear = (front + i) % nsize;
        arr = narr;
        size = nsize;
    }
    arr[rear] = value;
    rear = (rear + 1) % size;
    ++length;
}

template <class T>
T Queue<T>::Pop() {
    T temp = arr[front];
    front = (front + 1) % size; // 原来的内存块没有做到真正的删除
    --length;
    return temp;
}

template <class T>
int Queue<T>::Size() {
    return size;
}

template <class T>
int Queue<T>::Length() {
    return length;
}

template <class T>
bool Queue<T>::Empty() {
    return length == 0;
}

template <class T>
bool Queue<T>::Full() {
    return length == size;
}


BFS::BFS() {
    
    
}

BFS::~BFS() {
    
    
}

void BFS::createGraph_M(int (*edge)[VERTEXNUM], int start, int end) {
    edge[start][end] = 1;
}

void BFS::displayGraph_M(int (*edge)[VERTEXNUM]) {
    for (int i = 0; i < VERTEXNUM; i++) {
        for (int j = 0; j < VERTEXNUM; j++) {
            std::cout << edge[i][j];
        }
        std::cout << std::endl;
    }
}

void BFS::BFT_M(int (*edge)[VERTEXNUM], int *vertexStatusArr) {
    for (int i = 0; i < VERTEXNUM; i++) {
        BFTCore_M(edge, i, vertexStatusArr);
    }
    std::cout << std::endl;
}

void BFS::BFTCore_M(int (*edge)[VERTEXNUM], int i, int *vertexStatusArr) {
    Queue<int> queue;
    queue.Push(i);
    
    while (!queue.Empty()) {
        int t = queue.Pop();
        if (vertexStatusArr[t] == 0) {
            std::cout << t << "->";
            vertexStatusArr[t] = 1;
            for (int i = 0; i < VERTEXNUM; i++) {
                if (edge[t][i] == 1) {
                    queue.Push(i);
                }
            }
        }
    }
}

void BFS::Test_M() {
    std::cout << "--------------邻接矩阵表示-----------------" << std::endl;
    
    //动态创建存放边的二维数组
    int (*edge)[VERTEXNUM] = (int (*)[VERTEXNUM])malloc(sizeof(int) * VERTEXNUM * VERTEXNUM);
    
    for (int i = 0; i < VERTEXNUM; i++) {
        for (int j = 0; j < VERTEXNUM; j++) {
            edge[i][j] = 0;
        }
    }
    
    // 存放顶点的遍历状态;0:未遍历,1:已遍历
    int *vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM*VERTEXNUM);
    for (int i = 0; i < VERTEXNUM; i++) {
        vertexStatusArr[i] = 0;
    }
    
    std::cout << "after init.." << std::endl;
    displayGraph_M(edge);
    
    //创建图
    createGraph_M(edge, 0, 3);
    createGraph_M(edge, 0, 4);
    createGraph_M(edge, 3, 1);
    createGraph_M(edge, 3, 2);
    createGraph_M(edge, 4, 1);
    
    std::cout << "after create.." << std::endl;
    displayGraph_M(edge);
    
    // 遍历
    std::cout << "traversal.." << std::endl;
    BFT_M(edge, vertexStatusArr);
    
    free(edge);
    
}

void BFS::createGraph_L(BEdge** edge, int start, int end) {
    BEdge* nedge = (BEdge*)malloc(sizeof(BEdge));
    nedge->vertex = end;
    nedge->next = nullptr;
    edge = edge + start;
    while (*edge != nullptr) {
        edge = &((*edge)->next);
    }
    *edge = nedge;
}

void BFS::displayGraph_L(BEdge** edge) {
    BEdge* nedge;
    int edgeCount = 0;
    for (int i = 0; i < VERTEXNUM; i++) {
        nedge = *(edge + i);
        std::cout << i << ":";
        while (nedge != nullptr) {
            std::cout << nedge->vertex << ",";
            nedge = nedge->next;
            edgeCount++;
        }
        std::cout << std::endl;
    }
    std::cout <<"edge count is " << edgeCount << std::endl;
}

void BFS::delGraph_L(BEdge** edge) {
    BEdge *p, *del;
    for (int i = 0; i < VERTEXNUM; i++) {
        p = *(edge + i);
        while (p != nullptr) {
            del = p;
            p = p->next;
            free(del);
        }
        edge[i] = nullptr;
    }
    free(edge);
}

void BFS::BFT_L(BEdge** edge, int* vertextStatusArr) {
    for (int i = 0; i < VERTEXNUM; i++) {
        BFTCore_L(edge, i, vertextStatusArr);
    }
    std::cout << std::endl;
}

void BFS::BFTCore_L(BEdge** edge, int i, int* vertexStatusArr) {
    Queue<int> queue;
    queue.Push(i);
    
    while (!queue.Empty()) {
        int t = queue.Pop();
        if (vertexStatusArr[t] == 0) {
            std::cout << t << "->";
            vertexStatusArr[t] = 1;
            
            BEdge* p = *(edge + t);
            while (p != nullptr) {
                queue.Push(p->vertex);
                p = p->next;
            }
        }
    }

}

void BFS::Test_L() {
    std::cout << "--------------邻接表表示-----------------" << std::endl;
    
    // 动态创建存放边的指针数组
    BEdge **edge = (BEdge**)malloc(sizeof(BEdge*)*VERTEXNUM);
    for (int i = 0; i < VERTEXNUM; i++) {
        edge[i] = nullptr;
    }
    
    // 存放顶点的遍历状态:0:未遍历,1:已遍历
    int *vertexStatusArr = (int*)malloc(sizeof(int)*VERTEXNUM);
    for (int i = 0; i < VERTEXNUM; i++) {
        vertexStatusArr[i] = 0;
    }
    
    std::cout << "after init.." << std::endl;
    displayGraph_L(edge);
    
    //创建图
    createGraph_L(edge, 0, 3);
    createGraph_L(edge, 0, 4);
    createGraph_L(edge, 3, 1);
    createGraph_L(edge, 3, 2);
    createGraph_L(edge, 4, 1);
    
    std::cout << "after create.." << std::endl;
    displayGraph_L(edge);
    
    // 深度优先遍历
    BFT_L(edge, vertexStatusArr);
    
    // 释放邻接表占用的内存
    delGraph_L(edge);
    edge = nullptr;
    free(vertexStatusArr);
    vertexStatusArr = nullptr;
}

参考:

  1. 深度优先遍历与广度优先遍历
  2. 图之图的深度优先遍历
posted @ 2017-02-15 06:36  banananana  阅读(31171)  评论(0编辑  收藏  举报