Loading

dp斜率优化

算法-dp斜率优化

前置知识:

凸包


斜率优化很玄学,凭空讲怎么也讲不好,所以放例题。


[APIO2014]序列分割

[APIO2014]序列分割

给你一个长度为 \(n\) 的序列 \(a_1,a_2,...,a_n\)。你可以切 \(k\) 刀,每一刀可以把某一段序列切成两段,然后获得两段和成绩的收益。最后求最大收益和得到最大收益的切割方案。

数据范围:\(2\le n\le 100000,1\le k\le\min\{n-1,200\},1\le a_i\le 10000\)


首先证明,切的顺序不影响结果。设序列为连着的 \(a,b,c\) 三段。三段的和分别为 \(A,B,C\)

如果先切开 \(a|b,c\) 再切开 \(a|b|c\),获益为 \(A(B+C)+BC=AB+AC+BC\)
如果先切开 \(a,b|c\) 再切开 \(a|b|c\),获益为 \((A+B)C+AB=AC+BC+AB\)

所以以此类推,切割的顺序不影响最终收益大小。


然后开始 \(\texttt{dp}\)\(F_{i,j}\) 表示前 \(i\) 个数切 \(j\) 刀的最大收益,\(s_i=\sum\limits^i_{j=1}a_j\),则有状态转移方程:

\[F_{i,j}=\max\{F_{t,j-1}+s_t(s_i-s_t)\}(0\le t<i) \]

因为 \(F_{i,j}\) 只由 \(F_{t,j-1}\) 推得,所以可以滚动数组 \(F\),令 \(f_j=F_{i,j}\)\(g_j=F_{i,j-1}\),那么上式就变成:

\[f_i=\max\{g_t+s_t(s_i-s_t)\}(0\le t<i) \]

如果直接暴力跑一次 \(2\) 重循环的 \(\texttt{dp}\)\(\Theta(n^2k)\)\(\color{#357}{\texttt{TLE}}\),但你仔细观察 \(g_t+s_t(s_i-s_t)\) 这个式子,如果有一个 \(p(0\le p<i)\) 满足

\[g_p+s_p(s_i-s_p)\ge g_t+s_t(s_i-s_t) \]

则推式可得:

\[(g_p-s_p^2)-(g_t-s_t^2)\ge s_t\cdot s_i-s_p\cdot s_i \]

\[\therefore\frac{(g_p-s_p^2)-(g_t-s_t^2)}{s_t-s_p}\ge s_i \]

\(slope=\frac{(g_p-s_p^2)-(g_t-s_t^2)}{s_t-s_p}\)

如果把 \((-s_p,g_p-s_p^2)\)\((-s_t,g_t-s_t^2)\) 看作平面直角坐标系中的两个点,那么 \(slope\) 就是这两个点连边的斜率。

因为 \(\texttt{dp}\) 循环 \(i=1\to n\)\(s_i\) 是递增的,而两个点的 \(slope\) 又不是随 \(s_i\) 变化的,所以可以维护一个双头单调队列,每次把 \(i\) 放到队尾,队列满足:

  1. 从左到右数递增。
  2. 从左到右相邻两个数所对应的点连边的斜率递减。

然后维护队列并 \(\texttt{dp}\)

循环 \(j=1\to k\)

赋值滚动数组 \(g=f\),清零 \(f\)
清空队列并在队列中加入 \(0\)(相当于原点)。
循环 \(i=1\to n\)

把队列头相邻两个数 \(slope\le s_i\) 的踢掉。
取队列头 \(p\)\(f_i=g_p+s_p(s_i-s_p)\)
因为最终要输出方案,所以记录索引 \(pro_{i,j}=p\)
\(i\) 看作点 \((-s_i,g_i-s_i^2)\),如果队尾相邻元素的 \(slope\ge i\) 和队尾元素的 \(slope\),就把队尾元素踢掉。
队尾加入 \(i\)

然后在单调队列和斜率优化的加持下,因为维护队列和循环 \(\texttt{dp}\) 的总时间复杂度为 \(\Theta(n)\), 所以总的时间复杂度缩减为 \(\Theta(nk)\)。于是蒟蒻逃脱了 \(\color{#357}{\texttt{TLE}}\) 的风险。


Code:

#include <bits/stdc++.h>
using namespace std;
/*
{a},{b},{c}
a(b+c)+bc=ab+ac+bc\-\Greatitude
(a+b)c+ab=ac+bc+ab/-/
*/
#define lng long long
const int N=1e5+10,K=210;
int n,k,a[N],q[N],p[N][K]; //n,k,ai,queue,方案路径
lng f[N],g[N],sum[N]; //fi,gt,si

double funct(int x,int y){ //两个点的slope
	if(sum[x]==sum[y]) return -1e16;
	return 1.0*((g[x]-sum[x]*sum[x])-(g[y]-sum[y]*sum[y]))/(sum[y]-sum[x]);
}
int main(){
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)
		scanf("%d",a+i),sum[i]=sum[i-1]+a[i];
	for(int j=1;j<=k;j++){ //维护单调队列+dp
		for(int i=1;i<=n;i++) g[i]=f[i],f[i]=0;
		int l=1,r=0; 
		q[++r]=0;
		for(int i=1;i<=n;i++){
			while(l<r&&funct(q[l],q[l+1])<=sum[i]) l++;
			f[i]=g[q[l]]+sum[q[l]]*(sum[i]-sum[q[l]]);
			p[i][j]=q[l];
			while(l<r&&funct(q[r-1],q[r])>=funct(q[r],i)) r--;
			q[++r]=i;
		}
	}
	printf("%lld\n",f[n]); //输出最终最大收益
	for(int i=k,j=n;i>=1;i--)
		printf("%d%c",j=p[j][i],"\n "[i>1]); //输出切割方案。
	return 0;
}

祝大家学习愉快!

posted @ 2020-03-28 11:45  George1123  阅读(134)  评论(1编辑  收藏  举报