题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB
前置知识:
莫比乌斯反演 </>
单组测试数据,给定 \(n,m\) ,求
\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\bmod 20101009 \]
数据范围:\(1\le n,m\le 10^7\)。
作为写出了最暴力的做法的蒟蒻,来推个式子。
\(n\le m\),一气呵成:
\[\begin{split}
g(n,m)=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\\
=&\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{\gcd(i,j)}\\
=&\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{d}[\gcd(i,j)=d]\\
=&\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}ijd[\gcd(i,j)=1]\\
=&\sum\limits_{d=1}^n d\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j\sum\limits_{k|\gcd(i,j)}\mu(k)\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i[k|i]\sum\limits_{j=1}^{\lfloor\frac md\rfloor}j[k|j]\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^n\mu(k)\sum\limits_{i=1}^{\lfloor\frac {n}{dk}\rfloor}ik\sum\limits_{j=1}^{\lfloor\frac {m}{dk}\rfloor}jk\\
=&\sum\limits_{d=1}^n d\sum\limits_{k=1}^nk^2\mu(k)\frac{\lfloor\frac{n}{dk}\rfloor(\lfloor\frac{n}{dk}\rfloor+1)}{2}\cdot\frac{\lfloor\frac{m}{dk}\rfloor(\lfloor\frac{m}{dk}\rfloor+1)}{2}\\
\end{split}
\]
将 \(x=dk\) 带入:
\[g(n,m)=\sum\limits_{x=1}^nx\cdot\frac{\lfloor\frac{n}{x}\rfloor(\lfloor\frac{n}{x}\rfloor+1)}{2}\cdot\frac{\lfloor\frac{m}{x}\rfloor(\lfloor\frac{m}{x}\rfloor+1)}{2}\sum\limits_{k|x}k\mu(k)
\]
然后筛 \(\mu(k)\) 时顺便计算 \(h(k)=k\mu(k)\),最后狄利克雷前缀和求 \(f(k)=\sum\limits_{k|x}k\mu(k)\)。
别忘了膜拜 \(20101009\),时间复杂度 \(\Theta(N+n)\)。
#include <bits/stdc++.h>
using namespace std;
//&Start
#define lng long long
#define lit long double
#define kk(i,n) "\n "[i<n]
const int inf=0x3f3f3f3f;
const lng Inf=1e17;
//&Mobius
const int N=1e7;
const int mod=20101009;
bitset<N+10> np;
int mu[N+10],cnt,p[N+10],f[N+10];
void Mobius(){
f[1]=mu[1]=1;
for(int i=2;i<=N;i++){
if(!np[i]) p[++cnt]=i,mu[i]=-1;
f[i]=(mu[i]*i+mod)%mod;
for(int j=1;j<=cnt&&i*p[j]<=N;j++){
np[i*p[j]]=1;
if(i%p[j]==0){mu[i*p[j]]=0;break;}
mu[i*p[j]]=-mu[i];
}
}
for(int j=1;j<=cnt;j++)
for(int i=1;i*p[j]<=N;i++)
(f[i*p[j]]+=f[i])%=mod; //狄利克雷前缀和
}
//&Data
int n,m,ans;
int bitfun(int x){
lng res=1ll*x*f[x]%mod;
(res*=1ll*(n/x+1)*(n/x)/2%mod)%=mod;
(res*=1ll*(m/x+1)*(m/x)/2%mod)%=mod; //如上
//这个1ll不乘要爆long long,30分。
return (int)res;
}
//&Main
int main(){
Mobius();
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
for(int i=1;i<=n;i++)
(ans+=bitfun(i))%=mod;
printf("%d\n",ans);
return 0;
}
祝大家学习愉快!