反标记相关Paper (complementary label)

Sugiyama 组理论范式文章:

  • NIPS-17 Learning from Complementary Labels

  • ICML-19 Complementary-Label Learning for Arbitrary Losses and Models(推荐)

  • ICML-20 Unbiased risk estimators can mislead: A case study of learning with complementary labels

  • ECCV-19 Learning with Biased Complementary Labels

  • ICML-20 Learning with multiple complementary labels (推荐)

  • AAAI-20 Generative-discriminative complementary learning

Negative Learning:

  • ICCV-19 NLNL: Negative Learning for Noisy Labels (从 noisy label 生成反标记) (推荐)

Loss function

  • ICCV-19 Symmetric Cross Entropy for Robust Learning With Noisy Labels (提出了 RCE, SCE = CE + RCE) (推荐)
  • ICML-20 Normalized Loss Functions for Deep Learning with Noisy Labels (推荐)

ps: 两文来自同一组作者,理论推导 follow AAAI-17 Robust Loss Functions under Label Noise for Deep Neural Networks

Reverse Cross Entropy (THU jun zhu 学生)

  • NIPS-18 Towards Robust Detection of Adversarial Examples (推荐)
    (提出了 Reverse Cross Entropy, 重名于 ICCV-19 的 RCE , 本质是 label smoothing 取参数 s=1.0。给了一些理论分析)
posted @ 2020-09-29 21:43  Gelthin  阅读(860)  评论(0编辑  收藏  举报