反标记相关Paper (complementary label)
Sugiyama 组理论范式文章:
-
NIPS-17 Learning from Complementary Labels
-
ICML-19 Complementary-Label Learning for Arbitrary Losses and Models(推荐)
-
ICML-20 Unbiased risk estimators can mislead: A case study of learning with complementary labels
-
ECCV-19 Learning with Biased Complementary Labels
-
ICML-20 Learning with multiple complementary labels (推荐)
-
AAAI-20 Generative-discriminative complementary learning
Negative Learning:
- ICCV-19 NLNL: Negative Learning for Noisy Labels (从 noisy label 生成反标记) (推荐)
Loss function
- ICCV-19 Symmetric Cross Entropy for Robust Learning With Noisy Labels (提出了 RCE, SCE = CE + RCE) (推荐)
- ICML-20 Normalized Loss Functions for Deep Learning with Noisy Labels (推荐)
ps: 两文来自同一组作者,理论推导 follow AAAI-17 Robust Loss Functions under Label Noise for Deep Neural Networks
Reverse Cross Entropy (THU jun zhu 学生)
- NIPS-18 Towards Robust Detection of Adversarial Examples (推荐)
(提出了 Reverse Cross Entropy, 重名于 ICCV-19 的 RCE , 本质是 label smoothing 取参数 s=1.0。给了一些理论分析)