算法刷题 Day 59 | ● 503.下一个更大元素II ● 42. 接雨水
503.下一个更大元素II
这道题和 739. 每日温度 几乎如出一辙,可以自己尝试做一做
Tips:跑两遍循环就可以啦
我的题解:
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
stack<int> st;
vector<int> result(nums.size(),-1);
st.push(0);
for(int i = 1; i<nums.size();i++){
while(!st.empty() && nums[i] > nums[st.top()]){
result[st.top()] = nums[i];
st.pop();
}
if(st.empty() || nums[i] <= nums[st.top()]){
st.push(i);
}
}
for(int i = 0; i<nums.size();i++){
while(!st.empty() && nums[i] > nums[st.top()]){
result[st.top()] = nums[i];
st.pop();
}
if(st.empty() || nums[i] <= nums[st.top()]){
st.push(i);
}
}
return result;
}
};
42. 接雨水
接雨水这道题目是 面试中特别高频的一道题,也是单调栈 应用的题目,大家好好做做。
建议是掌握 双指针 和单调栈,因为在面试中 写出单调栈可能 有点难度,但双指针思路更直接一些。
在时间紧张的情况有,能写出双指针法也是不错的,然后可以和面试官在慢慢讨论如何优化。
https://programmercarl.com/0042.%E6%8E%A5%E9%9B%A8%E6%B0%B4.html
Tips:本题共有两种解法,分别是单调栈和双指针。单调栈是”横着“计算,双指针是”竖着“计算。
单调栈解法:
关于单调栈的理论基础,单调栈适合解决什么问题,单调栈的工作过程,大家可以先看这题讲解 739. 每日温度 (opens new window)。
单调栈就是保持栈内元素有序。和栈与队列:单调队列 (opens new window)一样,需要我们自己维持顺序,没有现成的容器可以用。
通常是一维数组,要寻找任一个元素的右边或者左边第一个比自己大或者小的元素的位置,此时我们就要想到可以用单调栈了。
而接雨水这道题目,我们正需要寻找一个元素,右边最大元素以及左边最大元素,来计算雨水面积。
准备工作
那么本题使用单调栈有如下几个问题:
- 首先单调栈是按照行方向来计算雨水,如图:
知道这一点,后面的就可以理解了。
- 使用单调栈内元素的顺序
从大到小还是从小到大呢?
从栈头(元素从栈头弹出)到栈底的顺序应该是从小到大的顺序。
因为一旦发现添加的柱子高度大于栈头元素了,此时就出现凹槽了,栈头元素就是凹槽底部的柱子,栈头第二个元素就是凹槽左边的柱子,而添加的元素就是凹槽右边的柱子。
如图:
关于单调栈的顺序给大家一个总结: 739. 每日温度 (opens new window)中求一个元素右边第一个更大元素,单调栈就是递增的,84.柱状图中最大的矩形 (opens new window)求一个元素右边第一个更小元素,单调栈就是递减的。
- 遇到相同高度的柱子怎么办。
遇到相同的元素,更新栈内下标,就是将栈里元素(旧下标)弹出,将新元素(新下标)加入栈中。
例如 5 5 1 3 这种情况。如果添加第二个5的时候就应该将第一个5的下标弹出,把第二个5添加到栈中。
因为我们要求宽度的时候 如果遇到相同高度的柱子,需要使用最右边的柱子来计算宽度。
如图所示:
- 栈里要保存什么数值
使用单调栈,也是通过 长 * 宽 来计算雨水面积的。
长就是通过柱子的高度来计算,宽是通过柱子之间的下标来计算,
那么栈里有没有必要存一个pair<int, int>类型的元素,保存柱子的高度和下标呢。
其实不用,栈里就存放下标就行,想要知道对应的高度,通过height[stack.top()] 就知道弹出的下标对应的高度了。
所以栈的定义如下:
stack<int> st; // 存着下标,计算的时候用下标对应的柱子高度
明确了如上几点,我们再来看处理逻辑。
单调栈处理逻辑
以下操作过程其实和 739. 每日温度 (opens new window)也是一样的,建议先做 739. 每日温度 (opens new window)。
以下逻辑主要就是三种情况
- 情况一:当前遍历的元素(柱子)高度小于栈顶元素的高度 height[i] < height[st.top()]
- 情况二:当前遍历的元素(柱子)高度等于栈顶元素的高度 height[i] == height[st.top()]
- 情况三:当前遍历的元素(柱子)高度大于栈顶元素的高度 height[i] > height[st.top()]
先将下标0的柱子加入到栈中,st.push(0);
。 栈中存放我们遍历过的元素,所以先将下标0加进来。
然后开始从下标1开始遍历所有的柱子,for (int i = 1; i < height.size(); i++)
。
如果当前遍历的元素(柱子)高度小于栈顶元素的高度,就把这个元素加入栈中,因为栈里本来就要保持从小到大的顺序(从栈头到栈底)。
代码如下:
if (height[i] < height[st.top()]) st.push(i);
如果当前遍历的元素(柱子)高度等于栈顶元素的高度,要跟更新栈顶元素,因为遇到相相同高度的柱子,需要使用最右边的柱子来计算宽度。
代码如下:
if (height[i] == height[st.top()]) { // 例如 5 5 1 7 这种情况
st.pop();
st.push(i);
}
取栈顶元素,将栈顶元素弹出,这个就是凹槽的底部,也就是中间位置,下标记为mid,对应的高度为height[mid](就是图中的高度1)。
此时的栈顶元素st.top(),就是凹槽的左边位置,下标为st.top(),对应的高度为height[st.top()](就是图中的高度2)。
当前遍历的元素i,就是凹槽右边的位置,下标为i,对应的高度为height[i](就是图中的高度3)。
此时大家应该可以发现其实就是栈顶和栈顶的下一个元素以及要入栈的元素,三个元素来接水!
那么雨水高度是 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度,代码为:int h = min(height[st.top()], height[i]) - height[mid];
雨水的宽度是 凹槽右边的下标 - 凹槽左边的下标 - 1(因为只求中间宽度),代码为:int w = i - st.top() - 1 ;
当前凹槽雨水的体积就是:h * w
。
求当前凹槽雨水的体积代码如下:
while (!st.empty() && height[i] > height[st.top()]) { // 注意这里是while,持续跟新栈顶元素
int mid = st.top();
st.pop();
if (!st.empty()) {
int h = min(height[st.top()], height[i]) - height[mid];
int w = i - st.top() - 1; // 注意减一,只求中间宽度
sum += h * w;
}
}
双指针解法:
在暴力解法中,我们可以看到只要记录左边柱子的最高高度 和 右边柱子的最高高度,就可以计算当前位置的雨水面积,这就是通过列来计算。
当前列雨水面积:min(左边柱子的最高高度,记录右边柱子的最高高度) - 当前柱子高度。
为了得到两边的最高高度,使用了双指针来遍历,每到一个柱子都向两边遍历一遍,这其实是有重复计算的。我们把每一个位置的左边最高高度记录在一个数组上(maxLeft),右边最高高度记录在一个数组上(maxRight),这样就避免了重复计算。
当前位置,左边的最高高度是前一个位置的左边最高高度和本高度的最大值。
即从左向右遍历:maxLeft[i] = max(height[i], maxLeft[i - 1]);
从右向左遍历:maxRight[i] = max(height[i], maxRight[i + 1]);
我的题解:
单调栈解法:
class Solution {
public:
int trap(vector<int>& height) {
// 单调栈解法,横向计算雨水的量
stack<int> st;
int result = 0;
st.push(0);
for(int i = 1; i<height.size();i++){
if(height[i] < height[st.top()]){
st.push(i);
}
else if(height[i] == height[st.top()]){
st.pop();
st.push(i);
}
else{
while(!st.empty() && height[i] > height[st.top()]){
int bottom = st.top();
st.pop();
if(!st.empty()){
int h = min(height[st.top()],height[i]) - height[bottom];
int width = i - st.top() - 1;
result += h*width;
}
}
st.push(i);
}
}
return result;
}
};
双指针解法:
class Solution {
public:
int trap(vector<int>& height) {
vector<int> maxLeft(height.size(),0);
vector<int> maxRight(height.size(),0);
int result = 0;
maxLeft[0] = height[0];
for(int i = 1;i<height.size();i++){
maxLeft[i] = max(height[i], maxLeft[i-1]);
}
maxRight[height.size() - 1] = height[height.size() - 1];
for(int i = height.size() - 2; i>=0; i--){
maxRight[i] = max(height[i], maxRight[i+1]);
}
// 要注意第一个格子和最后一个格子是不能接水的
for(int i = 1; i < height.size() - 1; i++){
int h = min(maxLeft[i],maxRight[i]) - height[i];
if(h > 0) result += h;
}
return result;
}
};
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?