如何让你的SQL运行得更快

作者:csdn --zjcxc(邹建)

如何让你的SQL运行得更快    
  ----   人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略  
  了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库  
  环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。笔者在工作实践  
  中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的whe  
  re子句。在对它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个  
  方面分别进行总结:  
  ----   为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均  
  表示为(<   1秒)。  
  ----   测试环境--  
  ----   主机:HP   LH   II  
  ----   主频:330MHZ  
  ----   内存:128兆  
  ----   操作系统:Operserver5.0.4  
  ----数据库:Sybase11.0.3  
  一、不合理的索引设计  
  ----例:表record有620000行,试看在不同的索引下,下面几个   SQL的运行情况:  
  ----   1.在date上建有一非个群集索引  
  select   count(*)   from   record   where   date   >  
  '19991201'   and   date   <   '19991214'and   amount   >  
  2000   (25秒)  
  select   date,sum(amount)   from   record   group   by   date  
  (55秒)  
  select   count(*)   from   record   where   date   >  
  '19990901'   and   place   in   ('BJ','SH')   (27秒)  
  ----   分析:  
  ----date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在  
  范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。  
  ----   2.在date上的一个群集索引  
  select   count(*)   from   record   where   date   >  
  '19991201'   and   date   <   '19991214'   and   amount   >  
  2000   (14秒)  
  select   date,sum(amount)   from   record   group   by   date  
  (28秒)  
  select   count(*)   from   record   where   date   >  
  '19990901'   and   place   in   ('BJ','SH')(14秒)  
  ----   分析:  
  ----   在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范  
  围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范  
  围扫描,提高了查询速度。  
  ----   3.在place,date,amount上的组合索引  
  select   count(*)   from   record   where   date   >  
  '19991201'   and   date   <   '19991214'   and   amount   >  
  2000   (26秒)  
  select   date,sum(amount)   from   record   group   by   date  
  (27秒)  
  select   count(*)   from   record   where   date   >  
  '19990901'   and   place   in   ('BJ',   'SH')(<   1秒)  
  ----   分析:  
  ----   这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引  
  用place,因此也没有利用上索引;第三个SQL使用了place,且引用的所有列都包含在组  
  合索引中,形成了索引覆盖,所以它的速度是非常快的。  
  ----   4.在date,place,amount上的组合索引  
  select   count(*)   from   record   where   date   >  
  '19991201'   and   date   <   '19991214'   and   amount   >  
  2000(<   1秒)  
  select   date,sum(amount)   from   record   group   by   date  
  (11秒)  
  select   count(*)   from   record   where   date   >  
  '19990901'   and   place   in   ('BJ','SH')(<   1秒)  
  ----   分析:  
  ----   这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并  
  且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。  
  ----   5.总结:  
  ----   缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要  
  建立在对各种查询的分析和预测上。一般来说:  
  ----   ①.有大量重复值、且经常有范围查询  
  (between,   >,<   ,>=,<   =)和order   by  
  、group   by发生的列,可考虑建立群集索引;  
  ----   ②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;  
  ----   ③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。  
   
  二、不充份的连接条件:  
  ----   例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在  
  account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况:  
   
  select   sum(a.amount)   from   account   a,  
  card   b   where   a.card_no   =   b.card_no(20秒)  
  ----   将SQL改为:  
  select   sum(a.amount)   from   account   a,  
  card   b   where   a.card_no   =   b.card_no   and   a.  
  account_no=b.account_no(<   1秒)  
  ----   分析:  
  ----   在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用  
  card上的索引,其I/O次数可由以下公式估算为:  
  ----   外层表account上的22541页+(外层表account的191122行*内层表card上对应外层  
  表第一行所要查找的3页)=595907次I/O  
  ----   在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用  
  account上的索引,其I/O次数可由以下公式估算为:  
  ----   外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一  
  行所要查找的4页)=   33528次I/O  
  ----   可见,只有充份的连接条件,真正的最佳方案才会被执行。  
  ----   总结:  
  ----   1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方  
  案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的  
  表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘  
  积最小为最佳方案。  
  ----   2.查看执行方案的方法--   用set   showplanon,打开showplan选项,就可以看到连  
  接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,30  
  2)。  
  三、不可优化的where子句  
  ----   1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢:  
  select   *   from   record   where  
  substring(card_no,1,4)='5378'(13秒)  
  select   *   from   record   where  
  amount/30<   1000(11秒)  
  select   *   from   record   where  
  convert(char(10),date,112)='19991201'(10秒)  
  ----   分析:  
  ----   where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不  
  进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么  
  就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样:  
  select   *   from   record   where   card_no   like  
  '5378%'(<   1秒)  
  select   *   from   record   where   amount  
  <   1000*30(<   1秒)  
  select   *   from   record   where   date=   '1999/12/01'  
  (<   1秒)  
  ----   你会发现SQL明显快起来!  
  ----   2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL:  
  select   count(*)   from   stuff   where   id_no   in('0','1')  
  (23秒)  
  ----   分析:  
  ----   where条件中的'in'在逻辑上相当于'or',所以语法分析器会将in   ('0','1')转化  
  为id_no   ='0'   or   id_no='1'来执行。我们期望它会根据每个or子句分别查找,再将结果  
  相加,这样可以利用id_no上的索引;但实际上(根据showplan),它却采用了"OR策略"  
  ,即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉  
  重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完  
  成时间还要受tempdb数据库性能的影响。  
  ----   实践证明,表的行数越多,工作表的性能就越差,当stuff有620000行时,执行时  
  间竟达到220秒!还不如将or子句分开:  
  select   count(*)   from   stuff   where   id_no='0'  
  select   count(*)   from   stuff   where   id_no='1'  
  ----   得到两个结果,再作一次加法合算。因为每句都使用了索引,执行时间只有3秒,  
  在620000行下,时间也只有4秒。或者,用更好的方法,写一个简单的存储过程:  
  create   proc   count_stuff   as  
  declare   @a   int  
  declare   @b   int  
  declare   @c   int  
  declare   @d   char(10)  
  begin  
  select   @a=count(*)   from   stuff   where   id_no='0'  
  select   @b=count(*)   from   stuff   where   id_no='1'  
  end  
  select   @c=@a+@b  
  select   @d=convert(char(10),@c)  
  print   @d  
  ----   直接算出结果,执行时间同上面一样快!  
  ----   总结:  
  ----   可见,所谓优化即where子句利用了索引,不可优化即发生了表扫描或额外开销。  
   
  ----   1.任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时  
  要尽可能将操作移至等号右边。  
  ----   2.in、or子句常会使用工作表,使索引失效;如果不产生大量重复值,可以考虑把  
  子句拆开;拆开的子句中应该包含索引。  
  ----   3.要善于使用存储过程,它使SQL变得更加灵活和高效。  
  ----   从以上这些例子可以看出,SQL优化的实质就是在结果正确的前提下,用优化器可  
  以识别的语句,充份利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。其实S  
  QL的性能优化是一个复杂的过程,上述这些只是在应用层次的一种体现,深入研究还会  
  涉及数据库层的资源配置、网络层的流量控制以及操作系统层的总体设计。

 

1.合理使用索引    
  索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:    
  ●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。    
  ●在频繁进行排序或分组(即进行group   by或order   by操作)的列上建立索引。    
  ●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。    
  ●如果待排序的列有多个,可以在这些列上建立复合索引(compound   index)。    
  ●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。    
   
  2.避免或简化排序    
  应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:    
  ●索引中不包括一个或几个待排序的列;    
  ●group   by或order   by子句中列的次序与索引的次序不一样;    
  ●排序的列来自不同的表。    
  为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。    
   
  3.消除对大型表行数据的顺序存取    
  在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。    
  还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:    
  SELECT   *   FROM   orders   WHERE   (customer_num=104   AND   order_num>1001)   OR   order_num=1008    
  虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:    
  SELECT   *   FROM   orders   WHERE   customer_num=104   AND   order_num>1001    
  UNION    
  SELECT   *   FROM   orders   WHERE   order_num=1008    
  这样就能利用索引路径处理查询。    
   
  4.避免相关子查询    
  一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。    
   
  5.避免困难的正规表达式    
  MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT   *   FROM   customer   WHERE   zipcode   LIKE   “98_   _   _”    
  即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT   *   FROM   customer   WHERE   zipcode   >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。    
  另外,还要避免非开始的子串。例如语句:SELECT   *   FROM   customer   WHERE   zipcode[2,3]   >“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。  
   
  6.使用临时表加速查询    
  把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:    
  SELECT   cust.name,rcvbles.balance,……other   columns    
  FROM   cust,rcvbles    
  WHERE   cust.customer_id   =   rcvlbes.customer_id    
  AND   rcvblls.balance>0    
  AND   cust.postcode>“98000”    
  ORDER   BY   cust.name    
  如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:    
  SELECT   cust.name,rcvbles.balance,……other   columns    
  FROM   cust,rcvbles    
  WHERE   cust.customer_id   =   rcvlbes.customer_id    
  AND   rcvblls.balance>0    
  ORDER   BY   cust.name    
  INTO   TEMP   cust_with_balance    
  然后以下面的方式在临时表中查询:    
  SELECT   *   FROM   cust_with_balance    
  WHERE   postcode>“98000”    
  临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。    
  注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。    
   
  7.用排序来取代非顺序存取    
  非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。    
  有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。    

 

3.优化   tempdb   性能  
   
   
  对   tempdb   数据库的物理位置和数据库选项设置的一般建议包括:    
  使   tempdb   数据库得以按需自动扩展。这确保在执行完成前不终止查询,该查询所生成的存储在   tempdb   数据库内的中间结果集比预期大得多。  
   
  将   tempdb   数据库文件的初始大小设置为合理的大小,以避免当需要更多空间时文件自动扩展。如果   tempdb   数据库扩展得过于频繁,性能会受不良影响。  
   
  将文件增长增量百分比设置为合理的大小,以避免   tempdb   数据库文件按太小的值增长。如果文件增长幅度与写入   tempdb   数据库的数据量相比太小,则   tempdb   数据库可能需要始终扩展,因而将妨害性能。  
   
  将   tempdb   数据库放在快速   I/O   子系统上以确保好的性能。在多个磁盘上条带化   tempdb   数据库以获得更好的性能。将   tempdb   数据库放在除用户数据库所使用的磁盘之外的磁盘上。有关更多信息,请参见扩充数据库。  

 

  4.优化服务器:  
   
  使用内存配置选项优化服务器性能  
  Microsoft&reg;   SQL   Server&#8482;   2000   的内存管理组件消除了对   SQL   Server   可用的内存进行手工管理的需要。SQL   Server   在启动时根据操作系统和其它应用程序当前正在使用的内存量,动态确定应分配的内存量。当计算机和SQL   Server   上的负荷更改时,分配的内存也随之更改。有关更多信息,请参见内存构架。  
   
  下列服务器配置选项可用于配置内存使用并影响服务器性能:    
  min   server   memory  
  max   server   memory  
  max   worker   threads  
  index   create   memory  
   
  min   memory   per   query    
  min   server   memory   服务器配置选项可用于确保   SQL   Server   在达到该值后不会释放内存。可以基于   SQL   Server   的大小及活动将该配置选项设置为特定的值。如果选择设置此选项,必须为操作系统和其他程序留出足够的内存。如果操作系统没有足够的内存,会向   SQL   Server   请求内存,从而导致影响   SQL   Server   性能。  
   
  max   server   memory   服务器配置选项可用于:在   SQL   Server   启动及运行时,指定   SQL   Server   可以分配的最大内存量。如果知道有多个应用程序与   SQL   Server   同时运行,而且想保障这些应用程序有足够的内存运行,可以将该配置选项设置为特定的值。如果这些其它应用程序(如   Web   服务器或电子邮件服务器)只根据需要请求内存,则   SQL   Server   将根据需要给它们释放内存,因此不要设置   max   server   memory   服务器配置选项。然而,应用程序通常在启动时不假选择地使用可用内存,而如果需要更多内存也不请求。如果有这种行为方式的应用程序与   SQL   Server   同时运行在相同的计算机上,则将   max   server   memory   服务器配置选项设置为特定的值,以保障应用程序所需的内存不由   SQL   Server   分配出。  
  不要将   min   server   memory   和   max   server   memory   服务器配置选项设置为相同的值,这样做会使分配给   SQL   Server   的内存量固定。动态内存分配可以随时间提供最佳的总体性能。有关更多信息,请参见服务器内存选项。  
   
  max   worker   threads   服务器配置选项可用于指定为用户连接到   SQL   Server   提供支持的线程数。255   这一默认设置对一些配置可能稍微偏高,这要具体取决于并发用户数。由于每个工作线程都已分配,因此即使线程没有正在使用(因为并发连接比分配的工作线程少),可由其它操作(如高速缓冲存储器)更好地利用的内存资源也可能是未使用的。一般情况下,应将该配置值设置为并发连接数,但不能超过   32727。并发连接与用户登录连接不同。SQL   Server   实例的工作线程池只需要足够大,以便为同时正在该实例中执行批处理的用户连接提供服务。如果增加工作线程的数量超过默认值,会降低服务器性能。有关更多信息,请参见max   worker   threads   选项。  
  说明     当   SQL   Server   运行在   Microsoft   Windows&reg;   98   上时,最大工作线程服务器配置选项不起作用。  
   
  index   create   memory   服务器配置选项控制创建索引时排序操作所使用的内存量。在生产系统上创建索引通常是不常执行的任务,通常调度为在非峰值时间执行的作业。因此,不常创建索引且在非峰值时间时,增加该值可提高索引创建的性能。不过,最好将   min   memory   per   query   配置选项保持在一个较低的值,这样即使所有请求的内存都不可用,索引创建作业仍能开始。有关更多信息,请参见   index   create   memory   选项。  
  min   memory   per   query   服务器配置选项可用于指定分配给查询执行的最小内存量。当系统内有许多查询并发执行时,增大   min   memory   per   query   的值有助于提高消耗大量内存的查询(如大型排序和哈希操作)的性能。不过,不要将   min   memory   per   query   服务器配置选项设置得太高,尤其是在很忙的系统上,因为查询将不得不等到能确保占有请求的最小内存、或等到超过   query   wait   服务器配置选项内所指定的值。如果可用内存比执行查询所需的指定最小内存多,则只要查询能对多出的内存加以有效的利用,就可以使用多出的内存。有关更多信息,请参见   min   memory   per   query   选项和   query   wait   选项。  
   
  使用   I/O   配置选项优化服务器性能  
  下列服务器配置选项可用于配置   I/O   的使用并影响服务器性能:    
   
  recovery   interval    
  recovery   interval   服务器配置选项控制   Microsoft&reg;   SQL   Server&#8482;   2000   在每个数据库内发出检查点的时间。默认情况下,SQL   Server   确定执行检查点操作的最佳时间。然而,若要确定这是否为适当的设置,需要使用   Windows   NT   性能监视器监视数据库文件上的磁盘写入活动。导致磁盘利用率达到   100%   的活动尖峰值会妨害性能。若更改该参数以使检查点进程较少出现,通常可以提高这种情况下的总体性能。但仍须继续监视性能以确定新值是否已对性能产生正面影响。有关更多信息,请参见recovery   interval   选项。  

posted @ 2009-04-06 19:01  赖文华.NET  阅读(182)  评论(0编辑  收藏  举报