缓存及其相关概念
缓存
1. 缓存的基本思想
很多朋友,只知道缓存可以提高系统性能以及减少请求相应时间,但是,不太清楚缓存的本质思想是什么。
缓存的基本思想其实很简单,就是我们非常熟悉的空间换时间。不要把缓存想的太高大上,虽然,它的确对系统的性能提升的性价比非常高。
其实,我们在学习使用缓存的时候,你会发现缓存的思想实际在操作系统或者其他地方都被大量用到。 比如 CPU Cache 缓存的是内存数据用于解决 CPU 处理速度和内存不匹配的问题,内存缓存的是硬盘数据用于解决硬盘访问速度过慢的问题。 再比如操作系统在 页表方案 基础之上引入了 快表 来加速虚拟地址到物理地址的转换。我们可以把块表理解为一种特殊的高速缓冲存储器(Cache)。
回归到业务系统来说:我们为了避免用户在请求数据的时候获取速度过于缓慢,所以我们在数据库之上增加了缓存这一层来弥补。
当别人再问你,缓存的基本思想的时候,就把上面 👆 这段话告诉他,我觉得会让别人对你刮目相看。
2. 使用缓存为系统带来了什么问题
软件系统设计中没有银弹,往往任何技术的引入都像是把双刃剑。 但是,你使用好了之后,这把剑就是好剑。
简单来说,为系统引入缓存之后往往会带来下面这些问题:
ps:其实我觉得引入本地缓存来做一些简单业务场景的话,实际带来的代价几乎可以忽略,下面 👇 主要是针对分布式缓存来说的。
- 系统复杂性增加 :引入缓存之后,你要维护缓存和数据库的数据一致性、维护热点缓存等等。
- 系统开发成本往往会增加 :引入缓存意味着系统需要一个单独的缓存服务,这是需要花费相应的成本的,并且这个成本还是很贵的,毕竟耗费的是宝贵的内存。但是,如果你只是简单的使用一下本地缓存存储一下简单的数据,并且数据量不大的话,那么就不需要单独去弄一个缓存服务。
3. 本地缓存解决方案
先来聊聊本地缓存,这个实际在很多项目中用的蛮多,特别是单体架构的时候。数据量不大,并且没有分布式要求的话,使用本地缓存还是可以的。
常见的单体架构图如下,我们使用 Nginx 来做负载均衡,部署两个相同的服务到服务器,两个服务使用同一个数据库,并且使用的是本地缓存。
那本地缓存的方案有哪些呢?且听 Guide 给你来说一说。
一:JDK 自带的 HashMap
和 ConcurrentHashMap
了。
ConcurrentHashMap
可以看作是线程安全版本的 HashMap
,两者都是存放 key/value 形式的键值对。但是,大部分场景来说不会使用这两者当做缓存,因为只提供了缓存的功能,并没有提供其他诸如过期时间之类的功能。一个稍微完善一点的缓存框架至少要提供:过期时间、淘汰机制、命中率统计这三点。
二: Ehcache
、 Guava Cache
、 Spring Cache
这三者是使用的比较多的本地缓存框架。
Ehcache
的话相比于其他两者更加重量。不过,相比于 Guava Cache
、 Spring Cache
来说, Ehcache
支持可以嵌入到 hibernate 和 mybatis 作为多级缓存,并且可以将缓存的数据持久化到本地磁盘中、同时也提供了集群方案(比较鸡肋,可忽略)。
Guava Cache
和 Spring Cache
两者的话比较像。
Guava
相比于 Spring Cache
的话使用的更多一点,它提供了 API 非常方便我们使用,同时也提供了设置缓存有效时间等功能。它的内部实现也比较干净,很多地方都和 ConcurrentHashMap
的思想有异曲同工之妙。
使用 Spring Cache
的注解实现缓存的话,代码会看着很干净和优雅,但是很容易出现问题比如缓存穿透、内存溢出。
三: 后起之秀 Caffeine。
相比于 Guava
来说 Caffeine
在各个方面比如性能要更加优秀,一般建议使用其来替代 Guava
。并且, Guava
和 Caffeine
的使用方式很像!
本地缓存固然好,但是缺陷也很明显,比如多个相同服务之间的本地缓存的数据无法共享。
下面我们从为什么要有分布式缓存为接入点来正式进入 Redis 的相关问题总结。
4. 为什么要有分布式缓存?/为什么不直接用本地缓存?
我们可以把分布式缓存(Distributed Cache) 看作是一种内存数据库的服务,它的最终作用就是提供缓存数据的服务。
如下图所示,就是一个简单的使用分布式缓存的架构图。我们使用 Nginx 来做负载均衡,部署两个相同的服务到服务器,两个服务使用同一个数据库和缓存。
本地的缓存的优势是低依赖,比较轻量并且通常相比于使用分布式缓存要更加简单。
再来分析一下本地缓存的局限性:
- 本地缓存对分布式架构支持不友好,比如同一个相同的服务部署在多台机器上的时候,各个服务之间的缓存是无法共享的,因为本地缓存只在当前机器上有。
- 本地缓存容量受服务部署所在的机器限制明显。 如果当前系统服务所耗费的内存多,那么本地缓存可用的容量就很少。
使用分布式缓存之后,缓存部署在一台单独的服务器上,即使同一个相同的服务部署在再多机器上,也是使用的同一份缓存。 并且,单独的分布式缓存服务的性能、容量和提供的功能都要更加强大。
使用分布式缓存的缺点呢,也很显而易见,那就是你需要为分布式缓存引入额外的服务比如 Redis 或 Memcached,你需要单独保证 Redis 或 Memcached 服务的高可用。
5. 缓存读写模式/更新策略
下面介绍到的三种模式各有优劣,不存在最佳模式,根据具体的业务场景选择适合自己的缓存读写模式。
5.1. Cache Aside Pattern(旁路缓存模式)
- 写:更新 DB,然后直接删除 cache 。
- 读:从 cache 中读取数据,读取到就直接返回,读取不到的话,就从 DB 中取数据返回,然后再把数据放到 cache 中。
Cache Aside Pattern 中服务端需要同时维系 DB 和 cache,并且是以 DB 的结果为准。另外,Cache Aside Pattern 有首次请求数据一定不在 cache 的问题,对于热点数据可以提前放入缓存中。
Cache Aside Pattern 是我们平时使用比较多的一个缓存读写模式,比较适合读请求比较多的场景。
5.2. Read/Write Through Pattern(读写穿透)
Read/Write Through 套路是:服务端把 cache 视为主要数据存储,从中读取数据并将数据写入其中。cache 服务负责将此数据读取和写入 DB,从而减轻了应用程序的职责。
- 写(Write Through):先查 cache,cache 中不存在,直接更新 DB。 cache 中存在,则先更新 cache,然后 cache 服务自己更新 DB(同步更新 cache 和 DB)。
- 读(Read Through): 从 cache 中读取数据,读取到就直接返回 。读取不到的话,先从 DB 加载,写入到 cache 后返回响应。
Read-Through Pattern 实际只是在 Cache-Aside Pattern 之上进行了封装。在 Cache-Aside Pattern 下,发生读请求的时候,如果 cache 中不存在对应的数据,是由客户端自己负责把数据写入 cache,而 Read Through Pattern 则是 cache 服务自己来写入缓存的,这对客户端是透明的。
和 Cache Aside Pattern 一样, Read-Through Pattern 也有首次请求数据一定不再 cache 的问题,对于热点数据可以提前放入缓存中。
5.3. Write Behind Pattern(异步缓存写入)
Write Behind Pattern 和 Read/Write Through Pattern 很相似,两者都是由 cache 服务来负责 cache 和 DB 的读写。
但是,两个又有很大的不同:Read/Write Through 是同步更新 cache 和 DB,而 Write Behind Caching 则是只更新缓存,不直接更新 DB,而是改为异步批量的方式来更新 DB。
Write Behind Pattern 下 DB 的写性能非常高,尤其适合一些数据经常变化的业务场景比如说一篇文章的点赞数量、阅读数量。 往常一篇文章被点赞 500 次的话,需要重复修改 500 次 DB,但是在 Write Behind Pattern 下可能只需要修改一次 DB 就可以了。
但是,这种模式同样也给 DB 和 Cache 一致性带来了新的考验,很多时候如果数据还没异步更新到 DB 的话,Cache 服务宕机就 gg 了。
6. 缓存问题
#缓存穿透
指的是对某个一定不存在的数据进行请求,该请求将会穿透缓存到达数据库。
解决方案:
- 对这些不存在的数据缓存一个空数据;
- 对这类请求进行过滤。(使用布隆过滤器)
#缓存雪崩
指的是由于数据没有被加载到缓存中,或者缓存数据在同一时间大面积失效(过期),又或者缓存服务器宕机,导致大量的请求都到达数据库。
在有缓存的系统中,系统非常依赖于缓存,缓存分担了很大一部分的数据请求。当发生缓存雪崩时,数据库无法处理这么大的请求,导致数据库崩溃。
解决方案:
- 为了防止缓存在同一时间大面积过期导致的缓存雪崩,可以通过观察用户行为,合理设置缓存过期时间来实现;
- 为了防止缓存服务器宕机出现的缓存雪崩,可以使用分布式缓存,分布式缓存中每一个节点只缓存部分的数据,当某个节点宕机时可以保证其它节点的缓存仍然可用。
- 也可以进行缓存预热,避免在系统刚启动不久由于还未将大量数据进行缓存而导致缓存雪崩。
#缓存一致性
缓存一致性要求数据更新的同时缓存数据也能够实时更新。
解决方案:
- 在数据更新的同时立即去更新缓存;
- 在读缓存之前先判断缓存是否是最新的,如果不是最新的先进行更新。
要保证缓存一致性需要付出很大的代价,缓存数据最好是那些对一致性要求不高的数据,允许缓存数据存在一些脏数据。
#缓存 “无底洞” 现象
指的是为了满足业务要求添加了大量缓存节点,但是性能不但没有好转反而下降了的现象。
产生原因:缓存系统通常采用 hash 函数将 key 映射到对应的缓存节点,随着缓存节点数目的增加,键值分布到更多的节点上,导致客户端一次批量操作会涉及多次网络操作,这意味着批量操作的耗时会随着节点数目的增加而不断增大。此外,网络连接数变多,对节点的性能也有一定影响。
解决方案:
- 优化批量数据操作命令;
- 减少网络通信次数;
- 降低接入成本,使用长连接 / 连接池,NIO 等。