CCF(管道清洁):最小费用最大流

管道清洁

201812-5

  • 需要清洁的管道下界为1,
  • 不需要清洁的管道下界为0,
  • 可重复经过的管道上界为正无穷,
  • 不可重复经过的管道上界为1。
  • 这属于无源无汇的有容量下界的最小费用可行流。解决的方法就是首先增加一个源点和一个汇点,然后对每一条有下限的弧进行改造,改成容量下限为0,上限为c-b的一条弧,再增加两条分别从x点指向源点的上限为b的弧,以及从源点指向y点的上限为b的弧。
  • 最后,只需要求改造后的s-t的最小费用流就行了。但是当且仅当附加弧满载时候原网络有可行流。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
using namespace std;
const int N=210;
const int INF=0X3F3F3F3F; 
int n,m,e;
int no[N];
int overload;//需要清扫的道路数目
int sum;//根据需要清扫的道路数目可知必须要消耗的包子数目,注意这里仅仅是需要清扫的道路的必须的包子数目,而不是全部的
struct Edge {
    int from, to, cap, flow, cost;
};
struct MCMF {
    int n, m;
    vector<Edge> edges;
    vector<int> G[N];
    int d[N], inq[N], p[N], a[N];

    void init(int n) {
        this->n = n;
        for (int i = 0; i <= n; ++i) G[i].clear();
        edges.clear();
    }

    void AddEdge(int from, int to, int cap, int cost) {
        edges.push_back(Edge{from, to, cap, 0, cost});
        edges.push_back(Edge{to, from, 0, 0, -cost});
        m = edges.size();
        G[from].push_back(m-2); G[to].push_back(m-1);
    }

    bool spfa(int s, int t, int &flow, int &cost) {
        //M(inq, 0); M(d, INF);
        memset(inq,0,sizeof(inq));
        memset(d,INF,sizeof(d));
        d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
        queue<int> q;
        q.push(s);
        while (!q.empty()) {
            int x = q.front(); q.pop();
            inq[x] = 0;
            for (int i = 0; i < G[x].size(); ++i) {
                Edge &e = edges[G[x][i]];
                if (d[e.to] > d[x] + e.cost && e.cap > e.flow) {
                    d[e.to] = d[x] + e.cost;
                    p[e.to] = G[x][i];
                    a[e.to] = min(a[x], e.cap-e.flow);
                    if (inq[e.to]) continue;
                    q.push(e.to); inq[e.to] = 1;
                }
            }
        }
        if (d[t] == INF) return false;
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while (u != s) {
            edges[p[u]].flow += a[t];
            edges[p[u]^1].flow -= a[t];
            u = edges[p[u]].from;
        }
        return true;
    }

    int Mincost(int s, int t) {
        int flow = 0, cost = 0;
        while (spfa(s, t, flow, cost));
        if(flow!=overload)
            return -1;
        return cost;
    }

}solver;
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    int t,s;
    cin>>t>>s>>e;
    while(t--){
        overload=0;
        sum=0;
        int st,ed;
        cin>>n>>m;
        st=0,ed=n+1;
        memset(no,0,sizeof(no));
        solver.init(n+1);
        for(int i=0;i<m;i++){
            int x,y;
            char c;
            cin>>x>>y>>c;
            if(c=='A'){//需要被清理,可以走无数遍,上限为无穷,下限为1
                solver.AddEdge(x,y,INF,e);
                no[x]--;
                no[y]++;
                sum+=e;
            }else if(c=='B'){//需要被清理,只能走一遍,上限为1,下限也为1
                no[x]--;
                no[y]++;
                sum+=e;
            }else if(c=='C'){//不要被清理,可以走无数遍,上限为无穷,下限为0
                solver.AddEdge(x,y,INF,e);
            }else{//不需要被清理,但是只能走一遍,上限为1,下限为0
                solver.AddEdge(x,y,1,e);
            }
        }
        for(int i=1;i<=n;i++){//因为这里的下限刚好是1,所以可以采用++,--的方法来统计一个顶点共有多少次上限-下限
            if(no[i]>0){//后结点
                solver.AddEdge(st,i,no[i],0);//一下两条路属于附加结点,附加边,所以费用是0
                overload+=no[i];
            }else if(no[i]<0){//前结点
                solver.AddEdge(i,ed,-no[i],0);
            }
        }
        cout<<solver.Mincost(st,ed)+sum<<endl;
    }
    //system("pause");
    return 0;
}
posted @ 2019-09-01 12:12  Garrett_Wale  阅读(553)  评论(0编辑  收藏  举报