HDOJ-6656(数论+逆元)
Kejin Player
HDOJ-6656
- 设f[i]为从i升级到i+1期望需要的金钱,由于每级都是能倒退或者升级到i+1,所以询问从l,r的期望金钱可以直接前缀和,那么推导每一级升级需要的期望钱也可以用前缀和推导
- 设sum[i]=f[1]+f[2]....f[i] ,那么从 l 升级到 r 就是sum[r-1]-sum[l-1]。
- 对于f[i] ,有p的概率交钱直接变成i+1,有(1-p)的概率回到x级,那么回到x级后想要升级到i+1,需要sum[i-1]-sum[x-1]升回到i级,再+f[i]从i级打到i+1级
- 所以可以列出方程 f[i]=pa[i]+(1-p)(sum[i-1]-sum[x-1]+f[i]+a[i]),//这里的是求期望
- 原文链接:https://blog.csdn.net/liufengwei1/article/details/99326686
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const long long mod=1e9+7;
long long sum[500005];
long long dp[500005];
long long quick_mod(long long a,long long b){
long long ans=1;
a=a%mod;
while(b>0){
if(b%2==1)
ans=ans*a%mod;
b=b/2;
a=(a*a)%mod;
}
return ans%mod;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
while(t--){
int n,q;
cin>>n>>q;
long long r,s,x,a;
sum[0]=dp[0]=0;
for(int i=1;i<=n;i++){
cin>>r>>s>>x>>a;
int p=r*quick_mod(s,mod-2)%mod;
dp[i]=(a+(1-p+mod)%mod*(a+sum[i-1]-sum[x-1]+mod)%mod*quick_mod(p,mod-2)%mod)%mod;
sum[i]=(sum[i-1]+dp[i]+mod)%mod;
}
for(int i=0;i<q;i++){
int l,r;
cin>>l>>r;
long long ans=(sum[r-1]-sum[l-1]+mod)%mod;
cout<<ans<<endl;
}
}
return 0;
}
Either Excellent or Rusty