0-1 背包问题
算法打卡第29天
前言
虽然跟着振哥打卡了这么久,好多东西不复习早就都已经忘完了,于是今天格外的兴奋,想到了我每天第一时刻都会关注的博客来记录我之后的算法历程,
此刻,2021年2月2号星期2(还是源于我老爸不经意的一句话),现在的我还是一个小白白,刚过完Python 基础,面向对象才摸到了皮毛,后面还有很多严峻的挑战,
不知道几年后看到自己的这篇文章,想到自己最初的样子会是一个怎样的心情,也期待那时的我会在哪个城市。突然提笔还不知道怎么继续,可能现在是最迷茫的时候,
面临着毕业,等待着成绩,期盼着未来。
鸡汤:
山脉没有起伏怎么会有人称赞山峰的巍峨,大海没有波涛又怎会有人称赞浪花的美丽
一.算法简介(wiki)
def f(a1,a2,w): pass
二.分析过程
如下图所示:
第一行物品价值,第二行物品重量,我们从最右侧开始决策是否装入重量为12的物品:
背包可装最大重量恰好为 12
- 如果选择装入此物品,背包内物品价值为 10,并且已经不能再装入,因此得到一种可行解:价值为 10
- 如果选择不装入,我们的视线移动到下一个物品决策上,同样地我们会面临装入还是不装入的两个可选择项:
- 如果选择装入,创造 50 价值,并且还能最多装入重量为6的物品:
- 如果选择装入,创造 50 价值,并且还能最多装入重量为6的物品:
代码实现:
a1 = [100, 70, 50, 10] a2 = [10, 4, 6, 12] w = 12 def f(i, w): if w == 0 or i < 0: return 0 elif a2[i] > w: return f(i-1, w) return max(a1[i] + f(i-1, w-a2[i]), f(i-1, w)) r = f(3, w) print(r)
三.动态规划
我们需要选择n个元素中的若干个来形成最优解,假定为k个。那么对于这k个元素a1, a2, ...ak来说,它们组成的物品组合必然满足总重量<=背包重量限制,而且它们的价值必然是最大的。因为它们是我们假定的最优选择嘛,肯定价值应该是最大的。假定ak是我们按照前面顺序放入的最后一个物品。它的重量为wk,它的价值为vk。既然我们前面选择的这k个元素构成了最优选择,如果我们把这个ak物品拿走,对应于k-1个物品来说,它们所涵盖的重量范围为0-(W-wk)。假定W为背包允许承重的量。假定最终的价值是V,剩下的物品所构成的价值为V-vk。这剩下的k-1个元素是不是构成了一个这种W-wk的最优解呢?
我们可以用反证法来推导。假定拿走ak这个物品后,剩下的这些物品没有构成W-wk重量范围的最佳价值选择。那么我们肯定有另外k-1个元素,他们在W-wk重量范围内构成的价值更大。如果这样的话,我们用这k-1个物品再加上第k个,他们构成的最终W重量范围内的价值就是最优的。这岂不是和我们前面假设的k个元素构成最佳矛盾了吗?所以我们可以肯定,在这k个元素里拿掉最后那个元素,前面剩下的元素依然构成一个最佳解。
现在我们经过前面的推理已经得到了一个基本的递推关系,就是一个最优解的子解集也是最优的。可是,我们该怎么来求得这个最优解呢?我们这样来看。假定我们定义一个函数c[i, w]表示到第i个元素为止,在限制总重量为w的情况下我们所能选择到的最优解。那么这个最优解要么包含有i这个物品,要么不包含,肯定是这两种情况中的一种。如果我们选择了第i个物品,那么实际上这个最优解是c[i - 1, w-wi] + vi。而如果我们没有选择第i个物品,这个最优解是c[i-1, w]。这样,实际上对于到底要不要取第i个物品,我们只要比较这两种情况,哪个的结果值更大不就是最优的么?
在前面讨论的关系里,还有一个情况我们需要考虑的就是,我们这个最优解是基于选择物品i时总重量还是在w范围内的,如果超出了呢?我们肯定不能选择它,这就和c[i-1, w]一样。
这里有一点值得注意,这里的wi指的是第i个物品的重量,而不是到第i个物品时的总重量。
另外,对于初始的情况呢?很明显c[0, w]里不管w是多少,肯定为0。因为它表示我们一个物品都不选择的情况。c[i, 0]也一样,当我们总重量限制为0时,肯定价值为0。
这样,基于我们前面讨论的这3个部分,我们可以得到一个如下的递推公式:

有了这个关系,我们可以更进一步的来考虑代码实现了。我们有这么一个递归的关系,其中,后面的函数结果其实是依赖于前面的结果的。我们只要按照前面求出来最基础的最优条件,然后往后面一步步递推,就可以找到结果了。
我们再来考虑一下具体实现的细节。这一组物品分别有价值和重量,我们可以定义两个数组int[] v, int[] w。v[i]表示第i个物品的价值,w[i]表示第i个物品的重量。为了表示c[i, w],我们可以使用一个int[i][w]的矩阵。其中i的最大值为物品的数量,而w表示最大的重量限制。按照前面的递推关系,c[i][0]和c[0][w]都是0。而我们所要求的最终结果是c[n][w]。所以我们实际中创建的矩阵是(n + 1) x (w + 1)的规格。
import numpy as np def solve(vlist,wlist,totalWeight,totalLength): resArr = np.zeros((totalLength+1,totalWeight+1),dtype=np.int32) for i in range(1,totalLength+1): for j in range(1,totalWeight+1): if wlist[i] <= j: resArr[i,j] = max(resArr[i-1,j-wlist[i]]+vlist[i],resArr[i-1,j]) else: resArr[i,j] = resArr[i-1,j] return resArr[-1,-1] if __name__ == '__main__': v = [0, 20, 200, 120] w = [0, 10, 20, 30] weight = 50 n = 3 result = solve(v, w, weight, n) print(result)
参考链接:https://www.jianshu.com/p/25f4a183ede5