python 玩连一连
平时偶尔在微信上玩一些小游戏,某天发现一款称之为《最强连一连》的益智游戏,具体玩法概括就是"一笔画"的问题。玩了几关之后随着游戏的格子数量的增加,感觉自己的算力不够用了【汗】于是打算写个脚本用于辅助。
- windows环境下搭建好python编程环境,本人使用python3.8.3版本
- 安装adb(添加到系统环境变量)
- 安卓手机打开usb调试模式,本人手机:小米note3分辨率为1920*1080
- pip 安装好python opencv库
通过对游戏界面截图分析,发现游戏通关过程其实就是从起始点格子(内外层颜色不同的格子)、访问完全部的空白格子。看到这里很容易联想到把所有的格子抽象成N×M的二维数组,我们把不可访问的格子抽象成二维数组中的‘1’,可访问的格子抽象成‘0’,起始点格子抽象成‘S’,然后问题就变成了从二维数组中的‘S’点不重复访问数组中所有的‘0’点。然后通过深度优先算法暴力进行求解、并记录访问顺序。我们把格子相应的坐标与二维数组中的点进行映射,通过遍历保存的路径,然后在屏幕上点击相对应的坐标那么问题就解决了。
游戏运行界面:
经过上一步的分析我们需要获得游戏截图中所有的格子的坐标,提起图像处理那么现在该轮到opencv上场了,大致思路为:
5. 对游戏截图进行裁剪后,预处理灰度变换、滤波去噪点、二值化、膨胀处理
6. 使用findContours函数提取格子外轮廓,去掉边太短、两边差值过大的轮廓,选择相似面积最多的轮廓
7. 根据找到的轮廓按内颜色值不同,确定起始点格子
8. 找到格子轮廓的长与宽,以及轮廓之间的间距
9. 确定轮廓的左上顶点、然后枚举轮廓顶点坐标开始建图
图像预处理之后:
- 使用adb screencap命令对游戏界面进行截图
- 根据截图构建对应的二维数组
- 使用搜索算法求解、记录路径
- 遍历路径,使用adb tap或者touchscreen swipe命令点击相应的屏幕坐标点
- 游戏每次通关或通过累计5关后会弹出一个界面,使用adb tap命令点击相应坐标进入下一关
建图
""" =================================== -*- coding:utf-8 -*- Author :GadyPu E_mail :Gadypy@gmail.com Time :2020/9/20 0016 上午 11:44 FileName :create_map.py =================================== """ import cv2 import numpy as np from find_path import FindPath class CreateMap(object): def __init__(self, img_path: str = '', cut_size: tuple = (320, 1600)): self.img_path = img_path self.cut_size = cut_size self.points = [] self.start_ptn = None self.x_min = 0 self.y_min = 0 def get_rect_area(self, point: tuple): return abs(point[0] - point[2]) * abs(point[1] - point[3]) def img_process(self): img = cv2.imdecode(np.fromfile(self.img_path, dtype = np.uint8), cv2.IMREAD_COLOR) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = gray[self.cut_size[0]: self.cut_size[1], :] media_blur = cv2.medianBlur(gray, 3) thres = cv2.threshold(media_blur, 180, 255, cv2.THRESH_BINARY)[1] dila = cv2.dilate(thres, (3, 3)) contours = cv2.findContours(dila, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[0] for c in contours: #cv2.drawContours(img, [c], -1, (0, 0, 255), 2) x, _x, y, _y = -1, 9999, -1, 9999 for [i] in c: x = max(x, i[0]) _x = min(_x, i[0]) y = max(y, i[1]) _y = min(_y, i[1]) # 边太短的矩形丢弃 if abs(_x - x) < 40 or abs(_y - y) < 40: continue # 两边差值的绝对值控制在5以内 if abs(abs(_x - x) - abs(_y - y)) < 5: self.points.append((_x, _y + self.cut_size[0], x, y + self.cut_size[0])) # 寻找相似面积最多的轮廓 freq, freq_area = -1, -1 for i in range(len(self.points)): area = self.get_rect_area(self.points[i]) count = 1 for j in range(len(self.points)): if j == i: continue _area = self.get_rect_area(self.points[j]) if abs(area - _area) < 500: count += 1 if count > freq: freq = count freq_area = area point_temp = [] for i in self.points: area = self.get_rect_area(i) if abs(freq_area - area) < 500: point_temp.append(i) self.points.clear() self.points = point_temp self.points.reverse() # 寻找起始点(内外颜色值不同) count = { } temp = None for i in self.points: x, y = (i[0] + i[2]) // 2, (i[1] + i[3]) // 2 d = tuple(img[y][x]) if d in count.keys(): count.pop(d) temp = d elif d != temp: count[d] = i for i in count: self.start_ptn = count[i] # cv2.imshow('', img) # cv2.waitKey(0) # cv2.destroyAllWindows() def get_map_size(self): x, _x, y, _y = 9999, -1, 9999, -1 for i in self.points: x = min(x, i[0]) y = min(y, i[1]) _x = max(_x, i[2]) _y = max(_y, i[3]) self.x_min = x self.y_min = y dif_x, dif_y = 0, 0 H, W = self.points[0][3] - self.points[0][1], self.points[0][2] - self.points[0][0] n = (_x - x) // W m = (_y - y) // H ptn = self.points[0] for i in range(1, len(self.points)): if abs(ptn[1] - self.points[i][1]) < 3: dif_x = self.points[i][0] - ptn[2] if dif_x > W: continue else: break else: ptn = self.points[i] dif_y = dif_x if n * W + (n - 1) * dif_x > _x - x + n * 2: n -= 1 if m * H + (m - 1) * dif_y > _y - y + m * 2: m -= 1 return m, n, dif_x, dif_y, H, W def creat_grid(self): m, n, dif_x, dif_y, H, W = self.get_map_size() grid = [[('0', (0, 0)) for _ in range(n)] for _ in range(m)] for i in range(m): for j in range(n): _find = False p1 = self.x_min + (dif_x + W) * j p2 = self.y_min + (dif_y + H) * i center_point = (None, None) for ptn in self.points: if abs(p1 - ptn[0]) < 5 and \ abs(p2 - ptn[1]) < 5: _find = True center_point = (ptn[0] + ptn[2]) // 2, (ptn[1] + ptn[3]) // 2 if ptn == self.start_ptn: grid[i][j] = ('S', center_point) break if grid[i][j][1] == (0, 0): grid[i][j] = ('0' if _find else '1', center_point) #print(grid) return grid def build_map(self, img_path): self.img_path = img_path self.points = [] self.start_ptn = None self.x_min = 0 self.y_min = 0 self.img_process() return self.creat_grid() if __name__ == '__main__': import time t = time.time() d = CreateMap() grid = d.build_map('01.png') p = FindPath() print(p.find_path(grid)) print(time.time() - t)
寻找路径
""" =================================== -*- coding:utf-8 -*- Author :GadyPu E_mail :Gadypy@gmail.com Time :2020/9/20 0013 下午 07:59 FileName :find_path.py =================================== """ import copy class FindPath(object): def __init__(self): self.dx = [0, 0, -1, 1] self.dy = [-1, 1, 0, 0] self.ret_path = [] self.blank = 0 self.start_x = -1 self.start_y = -1 def find_path(self, grid: list): H, W = len(grid), len(grid[0]) vis = [[False for _ in range(W)] for _ in range(H)] self.blank = 0 self.ret_path = [] for i in range(H): for j in range(W): if grid[i][j][0] == 'S': self.start_x, self.start_y = i, j vis[i][j] = True elif grid[i][j][0] == '0': self.blank += 1 self.dfs(self.start_x, self.start_y, grid, vis, H, W, 0, self.blank, []) self.ret_path.insert(0, grid[self.start_x][self.start_y][1]) return self.ret_path def dfs(self, x: int, y: int, grid: list, vis: list, H :int, W: int, step: int, tot: int, res: list): if step == tot: self.ret_path = copy.deepcopy(res) print('find a answer!') return None for i in range(4): _x, _y = x + self.dx[i], y + self.dy[i] if _x < 0 or _y < 0 or _x >= H or _y >= W: continue if grid[_x][_y][0] == '0' and not vis[_x][_y]: vis[_x][_y] = True res.append(grid[_x][_y][1]) self.dfs(_x, _y, grid, vis, H, W, step + 1, tot, res) vis[_x][_y] = False res.pop() if __name__ == '__main__': pass
主程序
""" =================================== -*- coding:utf-8 -*- Author :GadyPu E_mail :Gadypy@gmail.com Time :2020/9/20 0016 上午 11:51 FileName :AutoRun.py =================================== """ import time import signal import os from create_map import CreateMap from find_path import FindPath g_exit = True class AutoRun(): def __init__(self): self.get_map = CreateMap() self.get_path = FindPath() self.next_level_point = (536, 1417) self.ad_point = (930, 660) def handler(self, signum, frame): global g_exit g_exit = False print('接收到ctrl c信号程序退出') def run(self): signal.signal(signal.SIGINT, self.handler) signal.signal(signal.SIGTERM, self.handler) level = 1 while g_exit: os.system('adb shell screencap -p /sdcard/Download/01.png') os.system('adb pull /sdcard/Download/01.png') time.sleep(1) grid = self.get_map.build_map('01.png') path = self.get_path.find_path(grid) print(path) if not path or len(path) == 1: time.sleep(0.2) continue for i in range(len(path) - 1): x0, y0, x1, y1, t = path[i][0], path[i][1], path[i + 1][0], path[i + 1][1], 50 os.system("adb shell input touchscreen swipe %d %d %d %d %d" % (x0, y0, x1, y1, t)) time.sleep(1.5) if level % 5 == 0: os.system(f'adb shell input tap {self.ad_point[0]} {self.ad_point[1]}') time.sleep(0.5) os.system(f'adb shell input tap {self.next_level_point[0]} {self.next_level_point[1]}') level += 1 os.system(f'adb shell input tap 0 0') print('程序运行中...') if __name__ == '__main__': d = AutoRun() d.run()
每台手机分辨率不一样,若要在其他机型上运行需要修改相应的坐标点。
adb tap命令执行太慢了每通关一关差不多要20s左右,到现在也没有啥好的办法。
By: GadyPu 博客地址:http://www.cnblogs.com/GadyPu/ 转载请说明