【bzoj4154】[Ipsc2015]Generating Synergy KD-tree
题目描述
给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问点a的颜色
输入
第一行一个数T,表示数据组数
接下来每组数据的第一行三个数n,c,q表示结点个数,颜色数和操作数
接下来一行n-1个数描述2..n的父节点
接下来q行每行三个数a,l,c
若c为0,表示询问a的颜色
否则将距离a不超过l的a的子节点染成c
输出
设当前是第i个操作,y_i为本次询问的答案(若本次操作是一个修改则y_i为0),令z_i=i*y_i,请输出z_1+z_2+...+z_q模10^9+7
样例输入
1
4 3 7
1 2 2
3 0 0
2 1 3
3 0 0
1 0 2
2 0 0
4 1 1
4 0 0
样例输出
32
题解
KD-tree
“子树内”是dfs序限制,“距离不超过l”是深度限制。对满足两种限制的点的修改,可以将其看作平面上的点,修改相当于矩形修改,使用lazy标记+pushdown即可。
时间复杂度$O(n\sqrt n)$
#include <cstdio> #include <cstring> #include <algorithm> #define N 100010 using namespace std; int head[N] , to[N] , next[N] , cnt , deep[N] , pos[N] , last[N] , tot , d , root; struct data { int p[2] , mx[2] , mn[2] , c[2] , w , tag; bool operator<(const data &a)const {return p[d] == a.p[d] ? p[d ^ 1] < a.p[d ^ 1] : p[d] < a.p[d];} }a[N]; inline void add(int x , int y) { to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt; } void dfs(int x) { int i; pos[x] = ++tot , a[x].p[0] = pos[x] , a[x].p[1] = deep[x]; for(i = head[x] ; i ; i = next[i]) deep[to[i]] = deep[x] + 1 , dfs(to[i]); last[x] = tot; } inline void pushup(int x) { int l = a[x].c[0] , r = a[x].c[1]; a[x].mx[0] = max(a[x].p[0] , max(a[l].mx[0] , a[r].mx[0])); a[x].mx[1] = max(a[x].p[1] , max(a[l].mx[1] , a[r].mx[1])); a[x].mn[0] = min(a[x].p[0] , min(a[l].mn[0] , a[r].mn[0])); a[x].mn[1] = min(a[x].p[1] , min(a[l].mn[1] , a[r].mn[1])); } int build(int l , int r , int now) { if(l > r) return 0; int mid = (l + r) >> 1; d = now , nth_element(a + l , a + mid , a + r + 1); a[mid].w = 1 , a[mid].tag = 0; a[mid].c[0] = build(l , mid - 1 , now ^ 1); a[mid].c[1] = build(mid + 1 , r , now ^ 1); pushup(mid); return mid; } inline void pushdown(int x) { if(a[x].tag) { int l = a[x].c[0] , r = a[x].c[1]; a[l].w = a[l].tag = a[r].w = a[r].tag = a[x].tag; a[x].tag = 0; } } void update(int bx , int ex , int by , int ey , int v , int x) { if(!x || a[x].mx[0] < bx || a[x].mn[0] > ex || a[x].mx[1] < by || a[x].mn[1] > ey) return; if(a[x].mn[0] >= bx && a[x].mx[0] <= ex && a[x].mn[1] >= by && a[x].mx[1] <= ey) { a[x].w = a[x].tag = v; return; } pushdown(x); if(a[x].p[0] >= bx && a[x].p[0] <= ex && a[x].p[1] >= by && a[x].p[1] <= ey) a[x].w = v; update(bx , ex , by , ey , v , a[x].c[0]) , update(bx , ex , by , ey , v , a[x].c[1]); } int query(int px , int py , int x) { d ^= 1; if(a[x].p[0] == px && a[x].p[1] == py) return a[x].w; pushdown(x); if(d) { if(py < a[x].p[1] || (py == a[x].p[1] && px < a[x].p[0])) return query(px , py , a[x].c[0]); else return query(px , py , a[x].c[1]); } else { if(px < a[x].p[0] || (px == a[x].p[0] && py < a[x].p[1])) return query(px , py , a[x].c[0]); else return query(px , py , a[x].c[1]); } } int main() { int T; scanf("%d" , &T); while(T -- ) { memset(head , 0 , sizeof(head)) , cnt = 1; a[0].mx[0] = a[0].mx[1] = -1 << 30 , a[0].mn[0] = a[0].mn[1] = 1 << 30; int n , m , i , x , y , z , ans = 0; scanf("%d%*d%d" , &n , &m); for(i = 2 ; i <= n ; i ++ ) scanf("%d" , &x) , add(x , i); dfs(1); root = build(1 , n , 0); for(i = 1 ; i <= m ; i ++ ) { scanf("%d%d%d" , &x , &y , &z); if(z) update(pos[x] , last[x] , deep[x] , deep[x] + y , z , root); else d = 1 , ans = (ans + (long long)query(pos[x] , deep[x] , root) * i) % 1000000007; } printf("%d\n" , ans); } return 0; }