【bzoj4001】[TJOI2015]概率论 生成函数+导数

题目描述

输入

输入一个正整数N,代表有根树的结点数

输出

输出这棵树期望的叶子节点数。要求误差小于1e-9

样例输入

1

样例输出

1.000000000


题解

生成函数+导数

先考虑节点个数为$n$的二叉树有多少个:$c_0=1,c_i=\sum\limits_{j=0}^{i-1}c_j*c_{i-j-1}$,显然这是Catalan数。

令其生成函数为$F(x)$,由其递推式可以列出方程:$F(x)=xF(x)^2+1$,解得:

$F(x)=\frac{1-\sqrt{1-4x}}{2x}$

(此处根号前面不能取负号,因为如果取正,分子上常数项不为$0$,就会出现$\frac 1x$项,它在生成函数中是无意义的($f(0)$无意义))

然后设有$i$个节点的二叉树的期望叶子节点个数为$p_i$,那么$p_i=\frac{\sum\limits_{j=0}^{i-1}c_jc_{i-j-1}(p_j+p_{i-j-1})}{c_i}$

$t_i=c_ip_i$,那么就有$t_1=1,t_i=\sum\limits_{j=0}^{i-1}(c_jt_{i-j-1}+c_{i-j-1}t_j)=2\sum\limits_{j=0}^{i-1}c_jt_{i-j-1}$

于是再令$t$的生成函数为$G(x)$,那么有$G(x)=2xF(x)G(x)+x$,解出:

$G(x)=\frac x{\sqrt{1-4x}}$

接下来是戏剧性的一幕:

$(xF(x))'=\frac 1{\sqrt{1-4x}}=\frac{G(x)}x$

这说明F与G的每一项都是有联系的。考虑$xF(x)$的每一项:$x·c_nx^n=c_nx^{n+1}$,求导之后变为$(n+1)c_nx^n$,而等式右端对应的项为$\frac{t_{n+1}x^{n+1}}x=t_{n+1}x^n$,因此说明$t_{n+1}=(n+1)c_n$,即:

$t_n=nc_{n-1}$

又因为$t_n=c_np_n$,所以有:

$p_n=\frac{nc_{n-1}}{c_n}$

而又因为$c$为卡特兰数,因此$c_n=\frac{C_{2n}^n}{n+1}$。所以把式子带进去,就可以推出:

$p_n=\frac{n(n+1)}{2(2n-1)}$

貌似本题如果在考场上的话直接打表都能推出结论吧。。。

代码还要看吗?。。。

#include <cstdio>
int main()
{
    double n;
    scanf("%lf" , &n);
    printf("%.9lf\n" , n * (n + 1) / (2 * n - 1) / 2);
    return 0;
}

 

 

posted @ 2017-09-13 16:48  GXZlegend  阅读(1012)  评论(0编辑  收藏  举报