【bzoj4001】[TJOI2015]概率论 生成函数+导数
题目描述
输入
输入一个正整数N,代表有根树的结点数
输出
输出这棵树期望的叶子节点数。要求误差小于1e-9
样例输入
1
样例输出
1.000000000
题解
生成函数+导数
先考虑节点个数为$n$的二叉树有多少个:$c_0=1,c_i=\sum\limits_{j=0}^{i-1}c_j*c_{i-j-1}$,显然这是Catalan数。
令其生成函数为$F(x)$,由其递推式可以列出方程:$F(x)=xF(x)^2+1$,解得:
$F(x)=\frac{1-\sqrt{1-4x}}{2x}$
(此处根号前面不能取负号,因为如果取正,分子上常数项不为$0$,就会出现$\frac 1x$项,它在生成函数中是无意义的($f(0)$无意义))
然后设有$i$个节点的二叉树的期望叶子节点个数为$p_i$,那么$p_i=\frac{\sum\limits_{j=0}^{i-1}c_jc_{i-j-1}(p_j+p_{i-j-1})}{c_i}$。
设$t_i=c_ip_i$,那么就有$t_1=1,t_i=\sum\limits_{j=0}^{i-1}(c_jt_{i-j-1}+c_{i-j-1}t_j)=2\sum\limits_{j=0}^{i-1}c_jt_{i-j-1}$。
于是再令$t$的生成函数为$G(x)$,那么有$G(x)=2xF(x)G(x)+x$,解出:
$G(x)=\frac x{\sqrt{1-4x}}$
接下来是戏剧性的一幕:
$(xF(x))'=\frac 1{\sqrt{1-4x}}=\frac{G(x)}x$
这说明F与G的每一项都是有联系的。考虑$xF(x)$的每一项:$x·c_nx^n=c_nx^{n+1}$,求导之后变为$(n+1)c_nx^n$,而等式右端对应的项为$\frac{t_{n+1}x^{n+1}}x=t_{n+1}x^n$,因此说明$t_{n+1}=(n+1)c_n$,即:
$t_n=nc_{n-1}$
又因为$t_n=c_np_n$,所以有:
$p_n=\frac{nc_{n-1}}{c_n}$
而又因为$c$为卡特兰数,因此$c_n=\frac{C_{2n}^n}{n+1}$。所以把式子带进去,就可以推出:
$p_n=\frac{n(n+1)}{2(2n-1)}$
貌似本题如果在考场上的话直接打表都能推出结论吧。。。
代码还要看吗?。。。
#include <cstdio> int main() { double n; scanf("%lf" , &n); printf("%.9lf\n" , n * (n + 1) / (2 * n - 1) / 2); return 0; }