【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述
输入
输出
样例输入
1 2
3 3
样例输出
20
题解
莫比乌斯反演+线性筛
$\sum\limits_{i=1}^n\sum\limits_{j=1}^m\gcd(i,j)^k\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=d]\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}[\gcd(i,j)=1]\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}\sum\limits_{t|gcd(i,j)}\mu(t)\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}\sum\limits_{j=1}^{\lfloor\frac md\rfloor}\sum\limits_{t|i\&t|j}\mu(t)\\=\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{t=1}^{\lfloor\frac{\min(n,m)}d\rfloor}\mu(t)\lfloor\frac n{dt}\rfloor\lfloor\frac m{dt}\rfloor$
继续令$D=dt$,可以得到:
$\sum\limits_{d=1}^{\min(n,m)}d^k\sum\limits_{t=1}^{\lfloor\frac{\min(n,m)}d\rfloor}\mu(t)\lfloor\frac n{dt}\rfloor\lfloor\frac m{dt}\rfloor\\=\sum\limits_{D=1}^{\min(n,m)}\lfloor\frac nD\rfloor\lfloor\frac mD\rfloor\sum\limits_{d|D}d^k\mu(t)\\=\sum\limits_{D=1}^{\min(n,m)}\lfloor\frac nD\rfloor\lfloor\frac mD\rfloor f(D)\\(f(D)=\sum\limits_{d|D}d^k\mu(t))$
此时可以选择通过枚举倍数来预处理$f$数组,有个小优化:枚举时先枚举$t$,如果$\mu(t)=0$则不进行操作。这样预处理的时间复杂度为$O(n\ln n+n\log k)$,可以勉强通过本题。
然后我就被CQzhangyu大佬D了一顿= =
此时可以发现$f$是$id^k$与$\mu$的狄利克雷卷积,两个积性函数的狄利克雷卷积也是积性函数。于是可以快筛$f$函数。
当$i$为质数时,显然 $f(i)=i^k-1$
考虑 $i*p$ (p是质数)的处理:
当 $i\mod p\neq 0$ 时,显然$i$与$p$互质,就有$f(i*p)=f(i)*f(p)$
当 $i\mod p=0$ 时,对$f(i*p)$有影响的$t$一定是与对$f(i)$有影响的$t$中,因为其余的因数都至少包含$p^2$,$\mu=0$。而此时$d$增加了$p$倍,故$f(i*p)=f(i)*p^k$。
综上可以线性筛出$f$函数,然后分块处理。时间复杂度为$O(n+\frac{n\log k}{\ln n}+T\sqrt n)$
#include <cstdio> #include <cstring> #include <algorithm> #define N 5000010 using namespace std; typedef long long ll; const int p = 5000000 , mod = 1000000007; int prime[N] , tot; ll d[N] , f[N] , sum[N]; bool np[N]; ll pow(ll x , ll y) { ll ans = 1; while(y) { if(y & 1) ans = ans * x % mod; x = x * x % mod , y >>= 1; } return ans; } int main() { int T , k , i , j , n , m; ll ans; scanf("%d%d" , &T , &k); f[1] = sum[1] = 1; for(i = 2 ; i <= p ; i ++ ) { if(!np[i]) prime[++tot] = i , d[tot] = pow(i , k) , f[i] = (d[tot] - 1 + mod) % mod; for(j = 1 ; j <= tot && i * prime[j] <= p ; j ++ ) { np[i * prime[j]] = 1; if(i % prime[j] == 0) { f[i * prime[j]] = f[i] * d[j] % mod; break; } else f[i * prime[j]] = f[i] * f[prime[j]] % mod; } sum[i] = (sum[i - 1] + f[i]) % mod; } while(T -- ) { scanf("%d%d" , &n , &m) , ans = 0; for(i = 1 ; i <= n && i <= m ; i = j + 1) j = min(n / (n / i) , m / (m / i)) , ans = (ans + (ll)(n / i) * (m / i) % mod * (sum[j] - sum[i - 1] + mod)) % mod; printf("%lld\n" , ans); } return 0; }