【bzoj2724】[Violet 6]蒲公英 分块+STL-vector

题目描述

输入

修正一下

l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1

输出

样例输入

6 3
1 2 3 2 1 2
1 5
3 6
1 5

样例输出

1
2
1


题解

分块+STL-vector

一个显而易见的结论:区间众数一定是一段连续的块的众数或块外的数,证明略(逃

先把数据离散化,然后分块预处理出f[i][j],表示从块i到块j的众数位置。具体实现的话直接开个桶存一下就好了。

然后考虑询问,整块的直接拿出来求一下出现次数,块外的单独拿出来求一下出现次数,只要求$2\sqrt n+1$次。

现在只要想出怎样求出来出现次数即可。一个简单地方法是:对于每个数开一个vector存一下出现位置,然后在vector上二分查找出现位置。

总时间复杂度为$O(n\sqrt n\log n)$,常数有点大...

#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#define N 50010
#define bl(x) (x - 1) / si
using namespace std;
vector<int> v[N];
int a[N] , c[N] , cnt[N] , f[250][250] , ref[N];
int query(int p , int l , int r)
{
    return upper_bound(v[p].begin() , v[p].end() , r) - lower_bound(v[p].begin() , v[p].end() , l);
}
int main()
{
    int n , m , si , i , j , t , maxn , x , y , ans , last = 0;
    scanf("%d%d" , &n , &m) , si = (int)sqrt(n);
    for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , c[i] = a[i];
    sort(c + 1 , c + n + 1);
    for(i = 1 ; i <= n ; i ++ ) t = a[i] , a[i] = lower_bound(c + 1 , c + n + 1 , a[i]) - c , v[a[i]].push_back(i) , ref[a[i]] = t;
    for(i = 0 ; i <= (n - 1) / si ; i ++ )
    {
        memset(cnt , 0 , sizeof(cnt)) , maxn = 0;
        for(j = i * si + 1 ; j <= n ; j ++ )
        {
            cnt[a[j]] ++ ;
            if(cnt[a[j]] > maxn || (cnt[a[j]] == maxn && a[j] < t)) maxn = cnt[a[j]] , t = a[j];
            if(j % si == 0) f[i][bl(j)] = t;
        }
    }
    while(m -- )
    {
        scanf("%d%d" , &x , &y) , x = (x + last - 1) % n + 1 , y = (y + last - 1) % n + 1 , maxn = 0;
        if(x > y) swap(x , y);
        if(bl(y) - bl(x) < 2)
        {
            for(i = x ; i <= y ; i ++ )
                if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
                    maxn = t , ans = a[i];
        }
        else
        {
            for(i = x ; i <= (bl(x) + 1) * si ; i ++ )
                if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
                    maxn = t , ans = a[i];
            if((t = query(f[bl(x) + 1][bl(y) - 1] , x , y)) > maxn || (t == maxn && f[bl(x) + 1][bl(y) - 1] < ans))
                maxn = t , ans = f[bl(x) + 1][bl(y) - 1];
            for(i = bl(y) * si + 1 ; i <= y ; i ++ )
                if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
                    maxn = t , ans = a[i];
        }
        printf("%d\n" , last = ref[ans]);
    }
    return 0;
}

 

 

posted @ 2017-06-23 20:21  GXZlegend  阅读(374)  评论(0编辑  收藏  举报