【bzoj4378】[POI2015]Logistyka 离散化+树状数组
题目描述
维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。
输入
第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。
输出
包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。
样例输入
3 8
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1
样例输出
NIE
TAK
NIE
TAK
题解
离散化+树状数组
刚开始看错题意了,以为是在某个选定的区间中查询,想了一大堆离线算法发现还是搞不出来,然后才注意到是查询整个序列。。
每次选出c个正数,并将它们都减去1,能进行s次操作的充分必要条件是:
因为每个数最多只能被选min(w[i],s)次。
这个式子可以用树状数组快速求出,方法为离散化后求出小于等于s的数的和以及个数,再用n减去个数即为大于s的个数。这里使用了2个树状数组。
结构体能够大大减少代码量~
#include <cstdio> #include <algorithm> #define N 1000010 using namespace std; typedef long long ll; int m , x[N] , opt[N] , top; ll y[N] , v[N] , w[N]; char str[5]; struct data { ll f[N]; void update(int x , int a) { int i; for(i = x ; i <= m + 1 ; i += i & -i) f[i] += a; } ll query(int x) { int i; ll ans = 0; for(i = x ; i ; i -= i & -i) ans += f[i]; return ans; } }num , sum; int main() { int n , i , tmp; scanf("%d%d" , &n , &m); v[0] = 1; for(i = 1 ; i <= m ; i ++ ) scanf("%s%d%lld" , str , &x[i] , &y[i]) , y[i] ++ , v[i] = y[i] , opt[i] = (str[0] == 'Z'); sort(v , v + m + 1); for(i = 1 ; i <= n ; i ++ ) num.update(1 , 1) , w[i] = 1; for(i = 1 ; i <= m ; i ++ ) { tmp = lower_bound(v , v + m + 1 , y[i]) - v + 1; if(opt[i]) printf("%s\n" , (n - num.query(tmp)) * (y[i] - 1) + sum.query(tmp) >= x[i] * (y[i] - 1) ? "TAK" : "NIE"); else num.update(lower_bound(v , v + m + 1 , w[x[i]]) - v + 1 , -1) , sum.update(lower_bound(v , v + m + 1 , w[x[i]]) - v + 1 , 1 - w[x[i]]) , num.update(tmp , 1) , sum.update(tmp , y[i] - 1) , w[x[i]] = y[i]; } return 0; }