【bzoj1116】[POI2008]CLO 并查集

原文地址:http://www.cnblogs.com/GXZlegend/p/6826544.html


题目描述

Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个town都有且只有一个入度

输入

第一行输入n m.1 <= n<= 100000,1 <= m <= 200000 下面M行用于描述M条边.

输出

TAK或者NIE 常做POI的同学,应该知道这两个单词的了...

样例输入

4 5
1 2
2 3
1 3
3 4
1 4

样例输出

TAK


题目大意

给你n个点和m条双向边,问能否将其中的某些边改成有向边,使得只考虑有向边的情况下每个点的入度都为1

题解

并查集

易知每个连通块都是相同的子问题,于是可以只考虑每个连通块。

一个连通块若有k个点,则必有k条有向边,即边数必须大于等于k。

如果一个连通块边数大于等于k,则一定存在环。这样使环中的边改为有向,其余由环中指向环外即可。

所以要判断的就是一个连通块是否有环,这可以用并查集来维护。

最后所有连通块都有环即符合题意。

#include <cstdio>
#include <algorithm>
using namespace std;
int f[100010] , r[100010];
int find(int x)
{
	return x == f[x] ? x : f[x] = find(f[x]);
}
int main()
{
	int n , m , i , x , y , tx , ty , flag = 1;
	scanf("%d%d" , &n , &m);
	for(i = 1 ; i <= n ; i ++ ) f[i] = i;
	while(m -- )
	{
		scanf("%d%d" , &x , &y);
		tx = find(x) , ty = find(y);
		if(tx == ty) r[tx] = 1;
		else f[tx] = ty , r[ty] |= r[tx];
	}
	for(i = 1 ; i <= n ; i ++ ) if(!r[find(i)]) flag = 0;
	printf("%s\n" , flag ? "TAK" : "NIE");
	return 0;
}

 

posted @ 2017-05-08 18:18  GXZlegend  阅读(442)  评论(0编辑  收藏  举报