【bzoj4318】OSU! 期望dp
题目描述
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
输入
第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。
输出
只有一个实数,表示答案。答案四舍五入后保留1位小数。
样例输入
3
0.5
0.5
0.5
样例输出
6.0
题解
期望dp
若第i个时连续的为x个,则第i+1个继续连续时对答案的贡献为(x+1)^3-x^3=3*x^2+3*x+1。
那么可以开数组记录一下连续个数的期望和连续个数平方的期望。
这里需要注意的是,平方的期望不等于期望的平方(不明觉厉)。
所以平方的期望需要递推来求,方法和上面类似,很容易就推出来,不懂可以看代码。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #include <cstdio> double f[100010] , a[100010] , b[100010]; int main() { int n , i; double p; scanf ( "%d" , &n); for (i = 1 ; i <= n ; i ++ ) { scanf ( "%lf" , &p); f[i] = f[i - 1] + (1 + 3 * a[i - 1] + 3 * b[i - 1]) * p; a[i] = (a[i - 1] + 1) * p; b[i] = (b[i - 1] + 2 * a[i - 1] + 1) * p; } printf ( "%.1lf\n" , f[n]); return 0; } |
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· DeepSeek 解答了困扰我五年的技术问题。时代确实变了!
· 本地部署DeepSeek后,没有好看的交互界面怎么行!
· 趁着过年的时候手搓了一个低代码框架
· 推荐一个DeepSeek 大模型的免费 API 项目!兼容OpenAI接口!