洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game
洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game
题目描述
Bessie is playing a number game against Farmer John, and she wants you to help her achieve victory.
Game i starts with an integer N_i (1 <= N_i <= 1,000,000). Bessie goes first, and then the two players alternate turns. On each turn, a player can subtract either the largest digit or the smallest non-zero digit from the current number to obtain a new number. For example, from 3014 we may subtract either 1 or 4 to obtain either 3013 or 3010, respectively. The game continues until the number becomes 0, at which point the last player to have taken a turn is the winner.
Bessie and FJ play G (1 <= G <= 100) games. Determine, for each game, whether Bessie or FJ will win, assuming that both play perfectly (that is, on each turn, if the current player has a move that will guarantee his or her win, he or she will take it).
Consider a sample game where N_i = 13. Bessie goes first and takes 3, leaving 10. FJ is forced to take 1, leaving 9. Bessie takes the remainder and wins the game.
贝茜和约翰在玩一个数字游戏.贝茜需要你帮助她.
游戏一共进行了G(1≤G≤100)场.第i场游戏开始于一个正整数Ni(l≤Ni≤1,000,000).游
戏规则是这样的:双方轮流操作,将当前的数字减去一个数,这个数可以是当前数字的最大数码,也可以是最小的非0数码.比如当前的数是3014,操作者可以减去1变成3013,也可以减去4变成3010.若干次操作之后,这个数字会变成0.这时候不能再操作的一方为输家. 贝茜总是先开始操作.如果贝茜和约翰都足够聪明,执行最好的策略.请你计算最后的赢家.
比如,一场游戏开始于13.贝茜将13减去3变成10.约翰只能将10减去1变成9.贝茜再将9减去9变成0.最后贝茜赢.
输入输出格式
输入格式:
* Line 1: A single integer: G
* Lines 2..G+1: Line i+1 contains the single integer: N_i
输出格式:
* Lines 1..G: Line i contains 'YES' if Bessie can win game i, and 'NO' otherwise.
输入输出样例
2 9 10
YES NO
说明
For the first game, Bessie simply takes the number 9 and wins. For the second game, Bessie must take 1 (since she cannot take 0), and then FJ can win by taking 9.
其实,这一堆英文我也没看懂,but,但是,我有翻译器啊,hhh。
不过好像大家都有。
代码
1 #include<cstdio> 2 #include<iostream> 3 bool win[1000010]; 4 int T,n,maxn,minn,x; 5 int main() { 6 scanf("%d",&T); 7 for(int i=1; i<=9; i++) win[i]=1; 8 for(int i=10; i<=1000010; i++) { 9 int s=i,t; 10 maxn=-1,minn=10; 11 while(s) { 12 t=s%10; 13 if(t>maxn&&t) maxn=t; 14 if(t<minn&&t) minn=t; 15 s/=10; 16 } 17 if(maxn!=-1) win[i]|=(!win[i-maxn]); 18 if(minn!=10) win[i]|=(!win[i-minn]); 19 } 20 while(T--) { 21 std::cin>>x; 22 if(win[x]) { 23 puts("YES"); 24 printf("\n"); 25 } else { 26 puts("NO"); 27 printf("\n"); 28 } 29 } 30 }