Day7 - D - The Euler function HDU - 2824
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
InputThere are several test cases. Each line has two integers a, b (2<a<b<3000000).OutputOutput the result of (a)+ (a+1)+....+ (b)Sample Input
3 100
Sample Output
3042
思路:欧拉函数前缀和板子
typedef long long LL; const int maxm = 3e6+5; LL Euler[maxm]; void getEuler() { Euler[1] = 1; for(int i = 2; i <= maxm; ++i) { if(!Euler[i]) { for(int j = i; j <= maxm; j += i) { if(!Euler[j]) Euler[j] = j; Euler[j] = Euler[j] / i * (i-1); } } } } int main() { int a, b; getEuler(); for(int i = 2; i <= maxm; ++i) Euler[i] += Euler[i-1]; while(scanf("%d%d", &a, &b) != EOF) { printf("%lld\n", Euler[b] - Euler[a-1]); } return 0; }