Day4-B-最短路径问题 HDU3790
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)Output输出 一行有两个数, 最短距离及其花费。Sample Input
3 2 1 2 5 6 2 3 4 5 1 3 0 0
Sample Output
9 11
思路:最短路问题,Djikstra即可,注意读入可能有重复边,需要判断一下,代码如下:
const int maxm = 1010; const int INF = 0x7fffffff; int N, M, Start, End, G[maxm][maxm], len[maxm][maxm], vis[maxm], cost[maxm], steps[maxm]; struct Node { int u, sum, step; Node(int _u, int _sum, int _step) : u(_u), sum(_sum), step(_step){} bool operator<(const Node &a) const { return a.sum < sum || (a.sum == sum && a.step < step); } }; void init() { for (int i = 1; i <= N; ++i) { cost[i] = steps[i] = INF; for (int j = 1; j <= N; ++j) G[i][j] = G[j][i] = len[i][j] = len[j][i] = INF; } memset(vis, 0, sizeof(vis)); } int main() { while(scanf("%d%d",&N,&M) && N + M) { init(); for (int i = 0; i < M; ++i) { int t1, t2, t3, t4; scanf("%d%d%d%d", &t1, &t2, &t3, &t4); if(G[t1][t2] > t3 || (G[t1][t2] == t3 && len[t1][t2] > t4)) { G[t1][t2] = G[t2][t1] = t3; len[t1][t2] = len[t2][t1] = t4; } } scanf("%d%d", &Start, &End); priority_queue<Node> q; q.push(Node(Start, 0, 0)); cost[Start] = steps[Start] = 0; while(!q.empty()) { Node p = q.top(); q.pop(); if(vis[p.u]++) continue; for (int i = 1; i <= N; ++i) { if(G[p.u][i] != INF) { if(cost[i] > cost[p.u] + G[p.u][i] || (cost[i] == cost[p.u] + G[p.u][i] && steps[i] > steps[p.u] + len[p.u][i])) { cost[i] = cost[p.u] + G[p.u][i]; steps[i] = steps[p.u] + len[p.u][i]; q.push(Node(i, cost[i], steps[i])); } } } } printf("%d %d\n", cost[End], steps[End]); } return 0; }