Day3-J-4 Values whose Sum is 0 POJ2785
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
思路:直接暴力的复杂度是N^4,肯定不行,可以两两合并,复杂度就是N^2,代码如下:
vector<int> buf[4]; vector<long long>sum1,sum2; int main() { int N,sum = 0; scanf("%d",&N); for(int i = 0; i < N; ++i) { // read for(int j = 0; j < 4; ++j) { int tmp; scanf("%d",&tmp); buf[j].push_back(tmp); } } for(int i = 0; i < N; ++i) { for(int j = 0; j < N; ++j) { sum1.push_back(buf[0][i] + buf[1][j]); sum2.push_back(buf[2][i] + buf[3][j]); } } sort(sum1.begin(), sum1.end()); sort(sum2.begin(), sum2.end()); for(int i = 0;i < sum1.size(); ++i) { long long tmp = -sum1[i]; sum += upper_bound(sum2.begin(), sum2.end(), tmp) - lower_bound(sum2.begin(), sum2.end(), tmp); } printf("%d",sum); return 0; }