Day2-M-Prime Ring Problem-HDU1016
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Inputn (0 < n < 20).
OutputThe output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
思路:依旧是回溯法,逐个判断即可,注意首尾也需要判断一下,用筛法建个表,代码如下:
const int maxm = 22; int n, vis[maxm], prime[330], res[maxm], kase = 0; void buildTable() { for (int i = 2; i * i < 330; ++i) { if(!prime[i]) { for (int j = i * i; j < 330; j += i) prime[j] = 1; } } } void dfs(int i) { if(i == n && !prime[res[0] + res[n-1]]) { for (int j = 0; j < n; ++j) { if(j)printf(" "); printf("%d", res[j]); } printf("\n"); } for (int j = 2; j <= n; ++j) { if(!vis[j] && !prime[res[i-1] + j]) { vis[j] = 1; res[i] = j; dfs(i + 1); vis[j] = 0; } } } int main() { buildTable(); while(scanf("%d",&n) != EOF) { printf("Case %d:\n", ++kase); memset(vis, 0, sizeof(vis)); res[0] = 1; vis[1] = 1; dfs(1); printf("\n"); } return 0; }