hdu 1757 A Simple Math Problem (乘法矩阵)
A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2441 Accepted Submission(s): 1415
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output
45
104
Author
linle
Source
Recommend
开始没什么思路,后来还是没思路..
然后看解题报告,发现时乘法矩阵,关键点还是在构造矩阵上。
参考:http://blog.sina.com.cn/s/blog_79b832820100wnu3.html
f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10)
构造的矩阵是:
|0 1 0 ........... 0| |f0| |f1 |
|0 0 1 0 ........ 0| |f1| |f2 |
|.....................1| * |...| = |...|
|a9 a8 .........a0 | |f9| |f10|
设为矩阵 A * 矩阵B =矩阵C
我们要求的是 f(k),就是矩阵C的最后一个元素,故依据矩阵的结合律,可看到
C=A*(A*(.....*(A*B))) ,要有k个A即 C=A^k*B ,然后就可以二分求A^k,最后乘上B就可以求得矩阵C
1 //0MS 232K 1214 B C++ 2 #include<stdio.h> 3 #include<string.h> 4 #define N 15 5 struct matrix{ 6 int g[N][N]; 7 }ans,temp; 8 int g[N]; 9 int m; 10 matrix mul(matrix a,matrix b) 11 { 12 matrix c; 13 for(int i=0;i<10;i++) 14 for(int j=0;j<10;j++){ 15 c.g[i][j]=0; 16 for(int k=0;k<10;k++) 17 c.g[i][j]+=a.g[i][k]*b.g[k][j]; 18 c.g[i][j]%=m; 19 } 20 return c; 21 } 22 void solve(int k) 23 { 24 while(k){ 25 if(k&1) ans=mul(temp,ans); 26 temp=mul(temp,temp); 27 k/=2; 28 } 29 int sum=0; 30 /* 31 for(int i=0;i<10;i++) 32 for(int j=0;j<10;j++) 33 printf(j==9?"%d\n":"%d ",ans.g[i][j]); 34 */ 35 for(int i=0;i<10;i++){ 36 sum+=ans.g[9][i]*i; 37 sum%=m; 38 } 39 printf("%d\n",sum); 40 } 41 int main(void) 42 { 43 int k; 44 while(scanf("%d%d",&k,&m)!=EOF) 45 { 46 for(int i=0;i<10;i++) 47 for(int j=0;j<10;j++) 48 temp.g[i][j]=ans.g[i][j]=0; 49 for(int i=0;i<10;i++) 50 scanf("%d",&g[i]); 51 for(int i=0;i<10;i++){ 52 if(i<9) temp.g[i][i+1]=1; 53 ans.g[i][i]=1; 54 temp.g[9][i]=g[9-i]; 55 } 56 solve(k-9); 57 } 58 return 0; 59 }