poj 2823 Sliding Window
Sliding Window
Time Limit: 12000MS | Memory Limit: 65536K | |
Total Submissions: 33094 | Accepted: 9831 | |
Case Time Limit: 5000MS |
Description
An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
The array is [1 3 -1 -3 5 3 6 7], and k is 3.
Window position | Minimum value | Maximum value |
---|---|---|
[1 3 -1] -3 5 3 6 7 | -1 | 3 |
1 [3 -1 -3] 5 3 6 7 | -3 | 3 |
1 3 [-1 -3 5] 3 6 7 | -3 | 5 |
1 3 -1 [-3 5 3] 6 7 | -3 | 5 |
1 3 -1 -3 [5 3 6] 7 | 3 | 6 |
1 3 -1 -3 5 [3 6 7] | 3 | 7 |
Your task is to determine the maximum and minimum values in the sliding window at each position.
Input
The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line.
Output
There
are two lines in the output. The first line gives the minimum values in
the window at each position, from left to right, respectively. The
second line gives the maximum values.
Sample Input
8 3 1 3 -1 -3 5 3 6 7
Sample Output
-1 -3 -3 -3 3 3 3 3 5 5 6 7
Source
POJ Monthly--2006.04.28, Ikki
1 //43796K 8766MS C++ 1712B 2013-10-13 21:42:22 2 /* 3 4 题意: 5 有n个数字,求每连续的m个中的最大最小数,并分别输出 6 7 线段树: 8 线段树小变形,不过我的做法好像耗的时空有点大= =、 9 query()中加了一个flag判断询问的是最大值还是最小值 10 11 */ 12 #include<stdio.h> 13 #include<string.h> 14 #include<stdlib.h> 15 #define N 1000005 16 #define inf 0x7ffffff 17 struct node{ 18 int l; 19 int r; 20 int nmax; 21 int nmin; 22 }tree[4*N]; 23 int p[N],n,m; 24 int ansmax[N]; 25 int ansmin[N]; 26 int Max(int a,int b) 27 { 28 return a>b?a:b; 29 } 30 int Min(int a,int b) 31 { 32 return a<b?a:b; 33 } 34 void build(int l,int r,int id) 35 { 36 tree[id].l=l; 37 tree[id].r=r; 38 if(l==r){ 39 tree[id].nmax=p[l];tree[id].nmin=p[l]; 40 return; 41 } 42 int mid=(l+r)/2; 43 build(l,mid,2*id); 44 build(mid+1,r,2*id+1); 45 tree[id].nmax=Max(tree[2*id].nmax,tree[2*id+1].nmax); 46 tree[id].nmin=Min(tree[2*id].nmin,tree[2*id+1].nmin); 47 } 48 int query(int l,int r,int id,bool flag) 49 { 50 if(tree[id].l>r || tree[id].r<l){ 51 return flag?inf:-inf; 52 } 53 if(tree[id].l>=l && tree[id].r<=r){ 54 return flag?tree[id].nmax:tree[id].nmin; 55 } 56 int mid=(tree[id].l+tree[id].r)/2; 57 if(mid>=r) return query(l,r,2*id,flag); 58 else if(mid<l) return query(l,r,2*id+1,flag); 59 else{ 60 if(flag) 61 return Max(query(l,mid,2*id,flag),query(mid+1,r,2*id+1,flag)); 62 else return Min(query(l,mid,2*id,flag),query(mid+1,r,2*id+1,flag)); 63 } 64 } 65 int main(void) 66 { 67 while(scanf("%d%d",&n,&m)!=EOF) 68 { 69 for(int i=1;i<=n;i++) 70 scanf("%d",&p[i]); 71 build(1,n,1); 72 for(int i=0;i<=n-m;i++){ 73 ansmax[i]=query(i+1,i+m,1,true); 74 ansmin[i]=query(i+1,i+m,1,false); 75 } 76 for(int i=0;i<=n-m;i++) 77 printf(i==n-m?"%d\n":"%d ",ansmin[i]); 78 for(int i=0;i<=n-m;i++) 79 printf(i==n-m?"%d\n":"%d ",ansmax[i]); 80 } 81 return 0; 82 }