hdu 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6742 Accepted Submission(s): 3226
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
Greater New York 2001
//15MS 292K 833 B C++ //暴力枚举,枚举出所有的矩形,比较 //利用DP降低时间复杂度 #include<stdio.h> #include<string.h> int g[105][105]; int dp[105]; int main(void) { int n; while(scanf("%d",&n)!=EOF) { for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&g[i][j]); int maxn=-127; for(int i=1;i<=n;i++){ //开始行 memset(dp,0,sizeof(dp)); for(int j=i;j<=n;j++){ //结束行 for(int k=1;k<=n;k++) //累加 dp[k]+=g[j][k]; int temp=dp[1]; int tmax=-127; //便于观察= = for(int k=2;k<=n;k++){ //i~j行中最优矩形 if(temp<0) temp=dp[k]; else temp+=dp[k]; if(temp>tmax) tmax=temp; } if(tmax>maxn) maxn=tmax; } } printf("%d\n",maxn); } return 0; }