hdu 2476 String painter
String painter
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1257 Accepted Submission(s): 532
Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
Sample Output
6
7
Source
2008 Asia Regional Chengdu
Recommend
lcy
1 //46MS 292K 1034 B C++ 2 //区间DP,给两个字符串s1、s2,求将s1变成s2的最少操作步数的刷法 3 4 /* 5 第一步:假设A,B完全不等,没有位置上的字符相等,那么可以进行区间dp 6 7 dp[i][j]表示从i到j最少需要多少步 8 9 dp[i][j]=dp[i+1][j]+1; 10 11 dp[i][j]=MIN(dp[i][j],dp[i+j][k]+dp[k+1][j]) ---(i+1~j) 12 13 第二步:考虑s1和s2某些位置会相等 14 15 ans[i]=dp[0][i] (if(s1[0]==s2[0]) ans[0]=0;) 16 17 ans[i]=ans[i-1] s1[i]==s2[i] 18 19 ans[i]=Min(ans[i],ans[j]+dp[j+1][i]) 0<=j 20 21 22 ans[i]记录 0~i 的最优刷法步数 23 */ 24 25 #include<stdio.h> 26 #include<string.h> 27 int dp[105][105];//dp[i][j]为i~j的刷法 28 char s1[105],s2[105]; 29 int ans[105],i,j,k,len; 30 int Min(int a,int b) 31 { 32 return a<b?a:b; 33 } 34 int main(void) 35 { 36 while(scanf("%s%s",s1,s2)!=EOF) 37 { 38 len=strlen(s1); 39 memset(dp,0,sizeof(dp)); 40 for(int j=0;j<len;j++){ 41 for(int i=j;i>=0;i--){ 42 dp[i][j]=dp[i+1][j]+1; //每个单独刷 43 for(int k=i+1;k<=j;k++){ //i~j间最优刷法 44 if(s2[i]==s2[k]) 45 dp[i][j]=Min(dp[i][j],dp[i+1][k]+dp[k+1][j]); 46 } 47 //printf("dp[%d][%d]=%d\n",i,j,dp[i][j]); 48 } 49 } 50 for(int i=0;i<len;i++) ans[i]=dp[0][i]; 51 if(s1[0]==s2[0]) ans[0]=0; 52 for(int i=1;i<len;i++){ //类似dij的思想 53 if(s1[i]==s2[i]) ans[i]=ans[i-1]; 54 else{ 55 for(int j=0;j<i;j++)//区间最优 56 ans[i]=Min(ans[i],ans[j]+dp[j+1][i]); 57 } 58 } 59 printf("%d\n",ans[len-1]); 60 } 61 return 0; 62 }