poj 2407 Relatives
RelativesTime Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10269 Accepted: 4950
Description
Given n, a positive integer, how many positive integers less than n are relatively prime to n? Two integers a and b are relatively prime if there are no integers x > 1, y > 0, z > 0 such that a = xy and b = xz.
Input
There are several test cases. For each test case, standard input contains a line with n <= 1,000,000,000. A line containing 0 follows the last case.
Output
For each test case there should be single line of output answering the question posed above.
Sample Input
7
12
0
Sample Output
6
4
Source
Waterloo local 2002.07.01
//184K 0MS C++ 416B //欧拉函数..竟然没反应过来 // H(n)=n*(1-1/a1)*(1-1/a2)*..*(1-1/an) // 其中,ai为n的质因数 #include<stdio.h> #include<math.h> int euler(int n) { int ret=n; for(int i=2;i<(int)sqrt(n*1.0)+1;i++){ if(n%i==0){ n/=i; ret=ret/i*(i-1); while(n%i==0) n/=i; } } if(n>1) ret=ret/n*(n-1); return ret; } int main(void) { int n; while(scanf("%d",&n),n) { printf("%d\n",euler(n)); } return 0; }