poj 1050 To the Max
To the MaxTime Limit: 1000MS Memory Limit: 10000K
Total Submissions: 37431 Accepted: 19715
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
Greater New York 2001
//208K 16MS C++ 862B //二维dp,枚举全部矩形 #include<stdio.h> #include<string.h> int g[105][105]; int dp[105]; int main(void) { int n; while(scanf("%d",&n)!=EOF) { for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%d",&g[i][j]); int ans=-1<<30; for(int i=0;i<n;i++){ //开始行 memset(dp,0,sizeof(dp)); for(int j=i;j<n;j++){ //结束行 for(int k=0;k<n;k++) //每次做一次 dp[k]+=g[j][k]; int tmax=-1<<30; int t=dp[0]; for(int k=1;k<n;k++){ //i到j行dp if(t<0) t=dp[k]; else t+=dp[k]; if(t>tmax) tmax=t; } if(tmax>ans) ans=tmax; } } printf("%d\n",ans); } return 0; }