CF755G PolandBall and Many Other Balls
CF755G PolandBall and Many Other Balls
倍增\(FFT\)
简单转移式:
\[f_{i,j}=f_{i-1,j}+f_{i-1,j-1}+f_{i-2,j-1}
\]
显然跑不动。
再来一个:
\[f_{i+j,k}=\sum_t f_{i,t}f_{j,k-t}+\sum_t f_{i-1,t}f_{j-1,k-t-1}
\]
上多项式!
\[F_n(x)=\sum_{i=0}^{\infty}f_{n,i}x^i
\]
\[F_{i+j}(x)=F_{i}(x)F_{j}(x)+xF_{i-1}(x)F_{j-1}(x)
\]
颓式子。
\[\begin{cases}
F_{2n}(x)=F_{n}^2(x)+xF_{n-1}^2\\
F_{2n-1}(x)=F_{n}(x)F_{n-1}(x)+xF_{n-1}(x)F_{n-2}(x)\\
F_{2n-2}(x)=F_{n-1}^2(x)+xF_{n-2}^2(x)
\end{cases}
\]
因此我们可以通过\(F_{n-2},F_{n-1},F_{n}\)快速求出\(F_{2n-2},F_{2n-1},F_{2n}\)。
倍增\(FFT\)即可。
\(Code:\)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 131075
#define ll long long
using namespace std;
const int p=998244353;
int n,k,s,l,G[2][25],rev[N];
int f[3][N],a[N],b[N],c[N],d[N],e[N];
void Add(int &x,int y)
{
x=(x+y)%p;
}
void Del(int &x,int y)
{
x=(x-y+p)%p;
}
void Mul(int &x,int y)
{
x=(ll)x*y%p;
}
int add(int x,int y)
{
return (x+y)%p;
}
int del(int x,int y)
{
return (x-y+p)%p;
}
int mul(int x,int y)
{
return (ll)x*y%p;
}
int ksm(int x,int y)
{
int ans=1;
while (y)
{
if (y & 1)
Mul(ans,x);
Mul(x,x);
y >>=1;
}
return ans;
}
void Pre()
{
G[0][23]=ksm(3,(p-1)/(1 << 23));
G[1][23]=ksm(G[0][23],p-2);
for (int i=22;i;--i)
{
G[0][i]=mul(G[0][i+1],G[0][i+1]);
G[1][i]=mul(G[1][i+1],G[1][i+1]);
}
}
void NTT(int *a,int t)
{
for (int i=0;i<s;++i)
if (i<rev[i])
swap(a[i],a[rev[i]]);
for (int mid=1,o=1;mid<s;mid <<=1,++o)
for (int j=0;j<s;j+=mid << 1)
{
int g=1;
for (int k=0;k<mid;++k,Mul(g,G[t][o]))
{
int x=a[j+k],y=mul(g,a[j+k+mid]);
a[j+k]=add(x,y),a[j+k+mid]=del(x,y);
}
}
}
void solve(int n)
{
s=1,l=0;
while (s<n)
s <<=1,++l;
for (int i=0;i<s;++i)
rev[i]=(rev[i >> 1] >> 1) | ((i & 1) << l-1);
}
void Cut(int *a,int n,int s)
{
memset(a+n+1,0,(s-n)*sizeof(int));
}
void shift()
{
memcpy(a,f[0],(k+1)*sizeof(int));
memcpy(b,f[1],(k+1)*sizeof(int));
memcpy(c,f[2],(k+1)*sizeof(int));
for (int i=1;i<=k;++i)
d[i]=b[i-1],e[i]=a[i-1];
solve((k+1) << 1);
NTT(a,0),NTT(b,0),NTT(c,0),NTT(d,0),NTT(e,0);
for (int i=0;i<s;++i)
f[0][i]=add(mul(b[i],b[i]),mul(e[i],a[i])),f[1][i]=add(mul(c[i],b[i]),mul(d[i],a[i])),f[2][i]=add(mul(c[i],c[i]),mul(d[i],b[i]));
NTT(f[0],1),NTT(f[1],1),NTT(f[2],1);
int invs=ksm(s,p-2);
for (int i=0;i<s;++i)
Mul(f[0][i],invs),Mul(f[1][i],invs),Mul(f[2][i],invs);
Cut(f[0],k,s),Cut(f[1],k,s),Cut(f[2],k,s);
memset(a,0,s*sizeof(int)),memset(b,0,s*sizeof(int)),memset(c,0,s*sizeof(int)),memset(d,0,s*sizeof(int)),memset(e,0,s*sizeof(int));
}
void nxt()
{
memcpy(f[0],f[1],(k+1)*sizeof(int)),memcpy(f[1],f[2],(k+1)*sizeof(int));
for (int i=0;i<=k;++i)
f[2][i]=add(f[1][i],(!i)?0:add(f[1][i-1],f[0][i-1]));
}
int main()
{
Pre();
scanf("%d%d",&n,&k);
f[1][0]=f[2][0]=f[2][1]=1;
s=1;
while (s<=n)
s <<=1,++l;
--l;
for (int i=l-1;i>=0;--i)
{
shift();
if ((n >> i) & 1)
nxt();
}
for (int i=1;i<=k;++i)
printf("%d ",f[2][i]);
putchar('\n');
return 0;
}