【CodeForces 613D】Kingdom and its Cities
链接
题目大意
给定一棵树,多组询问,每组询问给定 \(k\) 个点,你可以删掉不同于那 \(k\) 个点的 \(m\) 个点,使得这 \(k\) 个点两两不连通,要求最小化 \(m\),如果不可能输出 \(-1\)。询问之间独立。
思路
虚树板题。
虚树
针对一些有多组特殊点的树上问题。
如果只有一组特殊点,就是一道简单树上 DP。发现有一些点是多余的,于是考虑把多余的点去掉。具体做法是:特殊点作为关键点,将关键点按\(\mathrm{dfn}\) 排序,求出相邻点的最近公共祖先也作关键点,按照原树祖先后代关系建树即可。
代码:
const int N = 1e5 + 10;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
int n, m;
int head[N], tot;
struct edge {
int to, nxt;
}e[N << 1];
void add(int u, int v) {
e[++tot] = (edge) {v, head[u]}, head[u] = tot;
}
int dfn[N], dep[N], fa[N][25], cnt, son[N];
void dfs(int u, int fat) {
dfn[u] = ++cnt;
fa[u][0] = fat;
dep[u] = dep[fat] + 1;
for (int i = head[u]; i; i = e[i].nxt) {
if (e[i].to == fat) continue;
dfs(e[i].to, u);
}
son[u] = cnt;
}
int LCA(int u, int v) {
if (dep[u] > dep[v]) swap(u, v);
for (int j = 21; j >= 0; j--)
if (dep[fa[v][j]] >= dep[u])
v = fa[v][j];
if (u == v) return u;
for (int j = 21; j >= 0; j--)
if (fa[u][j] != fa[v][j])
u = fa[u][j], v = fa[v][j];
return fa[u][0];
}
int a[N << 1];
bool vis[N];
namespace VirtualTree {
int head[N], tot;
struct edge {
int to, nxt;
}e[N << 1];
void add(int u, int v) {
e[++tot] = (edge) {v, head[u]}, head[u] = tot;
}
bool cmp (int a, int b) {
return dfn[a] < dfn[b];
}
int stack[N];
void Build () {
memset (head, 0, sizeof head);
tot = 0;
sort (a + 1, a + 1 + m, cmp);
for (int i = 1, n = m; i < n; i++)
a[++m] = LCA(a[i], a[i + 1]);
sort (a + 1, a + 1 + m, cmp);
m = unique(a + 1, a + 1 + m) - a - 1;
int top = 0;
stack[++top] = a[1];
for (int i = 2; i <= m; i++) {
for (; top && son[stack[top]] < dfn[a[i]]; top--);
if (top) add(stack[top], a[i]);
stack[++top] = a[i];
}
}
int f[N], siz[N];
void dfs(int u) {
f[u] = 0;
if (vis[u]) {
siz[u] = 1;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
dfs (v);
f[u] += f[v];
if (siz[v]) f[u] ++;
}
} else {
siz[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
dfs (v);
f[u] += f[v];
siz[u] += siz[v];
}
if (siz[u] > 1) {
siz[u] = 0;
f[u]++;
}
}
}
}
int main() {
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
n = Read();
for (int i = 1; i < n; i++) {
int u = Read(), v = Read();
add(u, v), add(v, u);
}
dfs (1, 0);
for (int j = 1; j <= 21; j++)
for (int i = 1; i <= n; i++)
fa[i][j] = fa[fa[i][j - 1]][j - 1];
for (int t = Read(); t--; ) {
m = Read();
memset (vis, 0, sizeof vis);
for (int i = 1; i <= m; i++)
a[i] = Read(), vis[a[i]] = 1;
bool flag = 0;
for (int i = 1; i <= m; i++)
if (vis[fa[a[i]][0]]) {flag = 1; break;}
if (flag) {puts("-1"); continue;}
VirtualTree::Build();
VirtualTree::dfs(a[1]);
printf("%d\n", VirtualTree::f[a[1]]);
}
return 0;
}