【2021夏纪中游记】2021.7.17模拟赛
2021.7.17模拟赛
比赛概括:
\(\mathrm{sum}=0+0+0+0\)
唉。
T1 [JOI 2021 Final]有趣的家庭菜园 4:
题目大意:
思路:
\(\mathcal{O}(n)\) 求出需要浇水的前缀和和后缀和,枚举峰值,取最小的最大值即可。
代码:
const int N = 2e5 + 10;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
int n;
int a[N], b[N];
ll sum1[N], sum2[N], ans = 1e18;
int main()
{
n = Read();
for (int i = 1; i <= n; i++) a[i] = Read();
for (int i = 2; i <= n; i++) b[i] = a[i] - a[i - 1];
for (int i = 2; i <= n; i++)
{if(b[i] <= 0) sum1[i] = -b[i] + 1; sum1[i] += sum1[i-1];}
for (int i = n; i >= 2; i--)
{if(b[i] >= 0) sum2[i] = b[i] + 1; sum2[i] += sum2[i+1];}
for (int k = 1; k <= n; k++)
ans = min(ans, max(sum1[k], sum2[k + 1]));
printf ("%lld\n", ans);
return 0;
}
T2 [NOI2018]屠龙勇士:
题目大意:
思路:
stoorz 爷精准押题。
这题可以一眼看出是 ex-CRT:
\[\left\{\begin{matrix}
b_ix_i &\equiv &a_i\pmod{p_i} \\
&\vdots
\end{matrix}\right.\]
那么接下来题目有两个难点:
- 如何求出每条龙对应哪把剑。
- \(p_i\) 不是质数,所以 \(b_i\) 不能求逆元,该如何处理。
第一点,可以通过平衡树、权值线段树等维护。这里也可以偷懒用 multiset
。
第二点要剖析 ex-CRT 的本质。详见 emptyset 的博客。
代码:
const int N = 1e5 + 10;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
int t, n, m;
ll a[N], p[N];
int b[N], val[N];
ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b)
{
x = 1, y = 0;
return a;
}
ll gcd = exgcd(b, a % b, y, x);
y -= a / b * x;
return gcd;
}
ll qpow(ll a, ll b, ll mod)
{
ll ans = 1;
for (; b; b >>= 1, a = a * a % mod)
if (b & 1) ans = ans * a % mod;
return ans;
}
ll mul(ll a, ll b, ll mod)
{
ll ans = 0;
for (; b; b >>= 1, a = (a + a) % mod)
if (b & 1) ans = (ans + a) % mod;
return ans;
}
ll mx;
multiset <ll> s;
int main()
{
for (int t = Read(); t--; )
{
s.clear();
n = Read(), m = Read(); mx = 0;
for (int i = 1; i <= n; i++) a[i] = Read();
for (int i = 1; i <= n; i++) p[i] = Read();
for (int i = 1; i <= n; i++) val[i] = Read();
for (int i = 1; i <= m; i++) s.insert(Read());
for (int i = 1; i <= n; i++)
{
multiset<ll>::iterator u = s.upper_bound(a[i]);
if (u != s.begin()) u--;
b[i] = *u;
s.erase(u);
s.insert(val[i]); // b[i]x > a[i]
mx = max(mx, (ll)ceil((double)a[i] / b[i]));
}
bool HasSolution = 1;
ll lcm = 1, ans = 0;
for (int i = 1; i <= n; i++)
{
ll x, y, gcd = exgcd(lcm * b[i] % p[i], p[i], x, y), A = ((a[i] - b[i] * ans % p[i]) % p[i] + p[i]) % p[i];
x = (x % p[i] + p[i]) % p[i];
if (A % gcd) {puts("-1"); HasSolution = 0; break;}
ans = (ans + mul(A / gcd, x, p[i] / gcd) * lcm % (lcm *= p[i] / gcd)) % lcm;
}
if(!HasSolution) continue;
if (mx > ans) ans = ans + (ll)ceil((double)(mx - ans) / lcm) * lcm;
printf ("%lld\n", ans);
}
return 0;
}
T3 周长:
题目大意:
小PP喝饮料中了大奖,奖励n块宽度为1的农田,每一块都有自己的长度,小PP可以自己去选择这N块农田的位置,要按如图的方式拼接在一起。每块农田互不相同(即使长度一样也不同)那么显然有n!种放置方法。不同的方法可以使整个大农田的周长不同,如图(a)周长为16,而图(b)的周长为20.可证明没有比20 更大的周长存在。小PP喜欢绕着农田跑步,他希望最终这个大农田的周长最大。
正文:
考虑状压 DP。设 \(f_{i,j},g_{i,j}\) 分别表示状态 \(i\) 当前第 \(j\) 个块的最大周长及其方案数。转移显然。
代码:
const int N = 20, M = 4e4 + 10;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
int n, a[N];
ll f[M][N], g[M][N], ans, cnt;
int main()
{
n = Read();
for (int i = 1; i <= n; i++) a[i] = Read();
for (int i = 1; i <= n; i++) f[1 << i-1][i] = 2 * a[i], g[1 << i-1][i] = 1;
for (int k = 0; k < (1 << n); k++)
for (int i = 1; i <= n; i++)
if ((k >> i-1) & 1)
for (int j = 1; j <= n; j++)
if(!((k >> j-1) & 1))
{
if (f[k | (1 << j-1)][j] < f[k][i] + (a[j] - min(a[i], a[j])) * 2)
f[k | (1 << j-1)][j] = f[k][i] + (a[j] - min(a[i], a[j])) * 2,
g[k | (1 << j-1)][j] = g[k][i];
else if (f[k | (1 << j-1)][j] == f[k][i] + (a[j] - min(a[i], a[j])) * 2)
g[k | (1 << j-1)][j] += g[k][i];
}
for (int i = 1; i <= n; i++)
if (ans < f[(1 << n) - 1][i] + n * 2) ans = f[(1 << n) - 1][i] + n * 2, cnt = g[(1 << n) - 1][i];
else if (ans == f[(1 << n) - 1][i] + n * 2) cnt += g[(1 << n) - 1][i];
printf ("%lld %lld\n", ans, cnt);
return 0;
}
T4 [ROIR 2018 Day1]管道监控:
题目大意:
正文:
恶心。
线性规划问题。可以先用 trie 树求解出所有路经的最小花费。考虑建边:
- 源点向根节点连流量 \(+\infty\)、费用 \(0\) 的边。
- 叶子节点向汇点连流量 \(1\)、费用 \(0\) 的边。
- 节点 \(i\) 向父亲连一条流量叶子数减一、费用 \(0\) 的边;父亲再连向 \(i\) 流量为 \(+\infty\) 费用 \(0\) 的边。
- 如果当前点是某单词的结尾,向开头连流量 \(1\)、费用 \(w\) 的边。
由于这个图已经不是 DAG,求增广路时就可以用双端队列。
代码:
const int N = 510, M = 1e6 + 10;
const ll inf = 1e18;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
int n, m, t;
int fa[N], siz[N];
char c[N], s[M];
int S, T;
struct edge
{
ll to, w, val, nxt, id;
}e[M << 1];
int head[N], tot = 1;
void add(int u, int v, ll w, ll val, int id = 0)
{
e[++tot] = (edge) {v, w, val, head[u], id}, head[u] = tot;
e[++tot] = (edge) {u, 0, -val, head[v], id}, head[v] = tot;
}
struct Trie
{
ll tot, t[M][30], val[M], id[M];
Trie() { memset (val, 0x3f3f3f3f, sizeof val), tot = 1;}
void Insert(char *s, ll cst, ll k)
{
ll p = 1, len = strlen (s + 1);
for (int i = len; i; i--)
{
if (!t[p][s[i] - 'a']) t[p][s[i] - 'a'] = ++tot;
p = t[p][s[i] - 'a'];
}
if (val[p] > cst) val[p] = cst, id[p] = k;
}
void Add(int x)
{
ll p = 1;
for (ll u = x; fa[u]; u = fa[u])
{
if (!t[p][c[u] - 'a']) break;
p = t[p][c[u] - 'a'];
if (val[p] < inf) add(fa[u], x, 1, val[p], id[p]);
}
}
}tr;
int pre[N];
bool vis[N];
ll dis[N], incf;
deque <int> q;
bool SPFA()
{
memset (dis, 0x3f3f3f3f, sizeof dis);
while (!q.empty()) q.pop_front();
q.push_back(S);
vis[S] = 1; dis[S] = 0;
while (!q.empty())
{
int u = q.front(); q.pop_front();
vis[u] = 0;
for (int i = head[u]; ~i; i = e[i].nxt)
{
int v = e[i].to;
if (dis[v] > dis[u] + e[i].val && e[i].w)
{
dis[v] = dis[u] + e[i].val;
pre[v] = i;
if (!vis[v])
{
vis[v] = 1;
if (q.size() && dis[v] <= dis[q.front()]) q.push_front(v);
else q.push_back(v);
}
}
}
}
return dis[T] < inf;
}
ll cost, maxFlow;
void MCMF()
{
cost = 0;
while (SPFA())
{
int u = T; incf = inf;
for (; u != S; u = e[pre[u] ^ 1].to)
incf = min(incf, e[pre[u]].w);
cost += dis[T] * incf, maxFlow -= incf;
for (u = T; u != S; u = e[pre[u] ^ 1].to)
e[pre[u]].w -= incf,
e[pre[u] ^ 1].w += incf;
}
return ;
}
int main()
{
memset (head, -1, sizeof head);
n = Read(), m = Read(), t = Read() ^ 1;
S = N - 1, T = N - 2;
for (int i = 2; i <= n; i++)
{
fa[i] = Read();
for(c[i] = getchar(); !('a' <= c[i] && c[i] <= 'z'); c[i] = getchar());
siz[i] = 1, siz[fa[i]] = 0;
}
add(S, 1, inf, 0);
for (int i = 1; i <= n; i++)
{
if (!siz[i]) continue;
add(i, T, 1, 0); maxFlow++;
}
for (int i = n; i; i--)
{
add(fa[i], i, siz[i] - 1, 0);
add(i, fa[i], inf, 0);
siz[fa[i]] += siz[i];
}
for (int i = 1; i <= m; i++)
{
ll val = Read();
scanf ("%s", s + 1);
tr.Insert(s, val, i);
}
for (int i = 1; i <= n; i++) tr.Add(i);
MCMF();
if (maxFlow) {puts("-1"); return 0;}
printf ("%lld\n", cost);
if (t) return 0;
cost = 0;
for (int i = 2; i <= tot; i += 2)
if (!e[i].w && e[i].id) cost ++;
printf ("%lld\n", cost);
for (int i = 2; i <= tot; i += 2)
if (!e[i].w && e[i].id)
printf ("%d %d %d\n", e[i ^ 1].to, e[i].to, e[i].id);
return 0;
}