【YBTOJ】【Luogu P1771】方程的解

题目链接:

链接

题目大意:

给定 \(k,n\),求出 \(k\) 个数之和等于 \(n^n\bmod 1000\) 的方案数是多少。

正文:

根据插板法容易得到答案就是 \(C_{\left(n^n\bmod 1000\right)-1}^{k-1}\)。这么一来我们只要用高精度求组合数就能求出来了。

代码:


struct node
{
	int a[1010];
    int &operator [](int x){return a[x];}
	node()
	{
		memset (a, 0, sizeof a);
	}
	inline void print()
	{
		for (int i = a[0]; i >= 1; i--)
			printf ("%d", a[i]);
	}
}c;

node operator +(node A, node B)  
{
	int s = 0, g = 0;
	node C;
	int len = max(A[0], B[0]);
	for (int i = 1; i <= len + 10; i++)
	{
		s = A[i] + B[i] + g, g = s / 10;
		C[i]= (s % 10);
		if (!s && !g && i > len) break;
		C[0] = i; 
	}
	return C;
}

node operator * (node A, int a)  
{
	int s = 0, g = 0;
	node C;
	int len = A[0];
	for (int i = 1; i <= len + 10; i++)
	{
		s = A[i] * a + g, g = s / 10;
		C[i] = s % 10;
		if (!s && !g && i > len) break;
		C[0] = i; 
	}
	return C;
}

node operator / (node A, int a)  
{
	int s = 0;
	node C;
	C[0] = A[0];
	for (int i = A[0]; i; i--)
	{
		s = s * 10 + A[i];
		C[i] = s / a, s %= a;
	}
	while (!C[C[0]] && C[0] > 1) --C[0];
	return C;
}

int qpow(int a, int b)
{
    a %= 1000;
	ll ans = 1;
	for(; b; b >>= 1, a = a * a % 1000)
		if(b & 1)
			ans = ans * a % 1000;
    return ans;
}

int n, m;

int main()
{
	scanf ("%d%d", &m, &n);
	n = qpow(n, n);
	n--, m--;
	
	c[0] = c[1] = 1;
	for (int t = 1; t <= m; t++)
	{
		c = c * (n - t + 1);
		
		c = c / t;
	}
	c.print();
    return 0;
}
posted @ 2020-12-11 18:45  Jayun  阅读(122)  评论(0编辑  收藏  举报