POJ 1845 Sumdiv (整数唯一分解定理)
题目链接
Sumdiv
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 25841 | Accepted: 6382 |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
题意:
求A^B的约数和。
题解:
(1)整数唯一分解定理:
任意一个整数都可以写成素数相乘的形式
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2)约数:
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn);
(3)逆元:
a/b%mod = (a%b*mod)/b;
(4) 快速幂。
有了以上基础,最终:
A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <iostream> #include <queue> #include <map> #include <list> #include <utility> #include <set> #include <algorithm> #include <deque> #include <vector> #define mem(arr,num) memset(arr,0,sizeof(arr)) #define _for(i, a, b) for(int i = a; i <= b; i++) #define __for(i, a, b) for(int i = a; i >=b; i--) #define IO ios::sync_with_stdio(false);\ cin.tie(0);\ cout.tie(0); using namespace std; typedef long long ll; typedef vector<int > vi; const ll INF = 0x3f3f3f3f; const int mod = 9901; const int N = 50000+ 5; bool vis[N]; int prime[N],num; void getprime() { _for(i, 2, N){ if(!vis[i]) prime[++num] = i; for(int j = 1; j <= num && i * prime[j] <= N; j++){ vis[i * prime[j]] = true; if(i % prime[j] == 0) break; } } } /* ll quick_pow(ll a, ll b, ll m) { ll ret = 1; a %= m; while(b) { if(b & 1) ret = (ret * a) % m; b >>= 1; a = (a * a) % m; } return ret; } 有可能爆long long; */ ll quick_pow1(ll a, ll b, ll m){ ll ret = 0; a %= m; while(b) { if(b & 1) ret = (ret + a) % m; b >>= 1; a = (a + a) % m; } return ret; } ll quick_pow(ll a, ll b, ll m){ ll ret = 1; while(b) { if(b & 1) ret = quick_pow1(ret,a,m); a = quick_pow1(a,a,m); b >>= 1; } return ret; } int main() { ll A, B, ans = 1; getprime(); cin >> A >> B; for(int i = 1; prime[i] * prime[i] <= A; i++){ int cnt = 0; if(A % prime[i] == 0){ while(A % prime[i] == 0){ cnt++; A /= prime[i]; } // a/b%c = (a%b*c/b) ll M = (prime[i] - 1) * mod; ans *= (quick_pow(prime[i], cnt * B +1, M) + M - 1)/(prime[i] - 1); ans %= mod; } } if(A > 1){ ll M = (A - 1) * mod; ans *= (quick_pow(A, B +1, M) + M - 1)/(A - 1); ans %= mod; } cout << ans << endl; return 0; }
宝剑锋从磨砺出 梅花香自苦寒来