第13章 Python建模库介绍
本书中,我已经介绍了Python数据分析的编程基础。因为数据分析师和科学家总是在数据规整和准备上花费大量时间,这本书的重点在于掌握这些功能。
开发模型选用什么库取决于应用本身。许多统计问题可以用简单方法解决,比如普通的最小二乘回归,其它问题可能需要复杂的机器学习方法。幸运的是,Python已经成为了运用这些分析方法的语言之一,因此读完此书,你可以探索许多工具。
本章中,我会回顾一些pandas的特点,在你胶着于pandas数据规整和模型拟合和评分时,它们可能派上用场。然后我会简短介绍两个流行的建模工具,statsmodels和scikit-learn。这二者每个都值得再写一本书,我就不做全面的介绍,而是建议你学习两个项目的线上文档和其它基于Python的数据科学、统计和机器学习的书籍。
13.1 pandas与模型代码的接口
模型开发的通常工作流是使用pandas进行数据加载和清洗,然后切换到建模库进行建模。开发模型的重要一环是机器学习中的“特征工程”。它可以描述从原始数据集中提取信息的任何数据转换或分析,这些数据集可能在建模中有用。本书中学习的数据聚合和GroupBy工具常用于特征工程中。
优秀的特征工程超出了本书的范围,我会尽量直白地介绍一些用于数据操作和建模切换的方法。
pandas与其它分析库通常是靠NumPy的数组联系起来的。将DataFrame转换为NumPy数组,可以使用.values属性:
In [10]: import pandas as pd
In [11]: import numpy as np
In [12]: data = pd.DataFrame({
....: 'x0': [1, 2, 3, 4, 5],
....: 'x1': [0.01, -0.01, 0.25, -4.1, 0.],
....: 'y': [-1.5, 0., 3.6, 1.3, -2.]})
In [13]: data
Out[13]:
x0 x1 y
0 1 0.01 -1.5
1 2 -0.01 0.0
2 3 0.25 3.6
3 4 -4.10 1.3
4 5 0.00 -2.0
In [14]: data.columns
Out[14]: Index(['x0', 'x1', 'y'], dtype='object')
In [15]: data.values
Out[15]:
array([[ 1. , 0.01, -1.5 ],
[ 2. , -0.01, 0. ],
[ 3. , 0.25, 3.6 ],
[ 4. , -4.1 , 1.3 ],
[ 5. , 0. , -2. ]])
要转换回DataFrame,可以传递一个二维ndarray,可带有列名:
In [16]: df2 = pd.DataFrame(data.values, columns=['one', 'two', 'three'])
In [17]: df2
Out[17]:
one two three
0 1.0 0.01 -1.5
1 2.0 -0.01 0.0
2 3.0 0.25 3.6
3 4.0 -4.10 1.3
4 5.0 0.00 -2.0
笔记:最好当数据是均匀的时候使用.values属性。例如,全是数值类型。如果数据是不均匀的,结果会是Python对象的ndarray:
In [18]: df3 = data.copy() In [19]: df3['strings'] = ['a', 'b', 'c', 'd', 'e'] In [20]: df3 Out[20]: x0 x1 y strings 0 1 0.01 -1.5 a 1 2 -0.01 0.0 b 2 3 0.25 3.6 c 3 4 -4.10 1.3 d 4 5 0.00 -2.0 e In [21]: df3.values Out[21]: array([[1, 0.01, -1.5, 'a'], [2, -0.01, 0.0, 'b'], [3, 0.25, 3.6, 'c'], [4, -4.1, 1.3, 'd'], [5, 0.0, -2.0, 'e']], dtype=object)
对于一些模型,你可能只想使用列的子集。我建议你使用loc,用values作索引:
In [22]: model_cols = ['x0', 'x1']
In [23]: data.loc[:, model_cols].values
Out[23]:
array([[ 1. , 0.01],
[ 2. , -0.01],
[ 3. , 0.25],
[ 4. , -4.1 ],
[ 5. , 0. ]])
一些库原生支持pandas,会自动完成工作:从DataFrame转换到NumPy,将模型的参数名添加到输出表的列或Series。其它情况,你可以手工进行“元数据管理”。
在第12章,我们学习了pandas的Categorical类型和pandas.get_dummies函数。假设数据集中有一个非数值列:
In [24]: data['category'] = pd.Categorical(['a', 'b', 'a', 'a', 'b'],
....: categories=['a', 'b'])
In [25]: data
Out[25]:
x0 x1 y category
0 1 0.01 -1.5 a
1 2 -0.01 0.0 b
2 3 0.25 3.6 a
3 4 -4.10 1.3 a
4 5 0.00 -2.0 b
如果我们想替换category列为虚变量,我们可以创建虚变量,删除category列,然后添加到结果:
In [26]: dummies = pd.get_dummies(data.category, prefix='category')
In [27]: data_with_dummies = data.drop('category', axis=1).join(dummies)
In [28]: data_with_dummies
Out[28]:
x0 x1 y category_a category_b
0 1 0.01 -1.5 1 0
1 2 -0.01 0.0 0 1
2 3 0.25 3.6 1 0
3 4 -4.10 1.3 1 0
4 5 0.00 -2.0 0 1
用虚变量拟合某些统计模型会有一些细微差别。当你不只有数字列时,使用Patsy(下一节的主题)可能更简单,更不容易出错。
13.2 用Patsy创建模型描述
Patsy是Python的一个库,使用简短的字符串“公式语法”描述统计模型(尤其是线性模型),可能是受到了R和S统计编程语言的公式语法的启发。
Patsy适合描述statsmodels的线性模型,因此我会关注于它的主要特点,让你尽快掌握。Patsy的公式是一个特殊的字符串语法,如下所示:
y ~ x0 + x1
a+b不是将a与b相加的意思,而是为模型创建的设计矩阵。patsy.dmatrices函数接收一个公式字符串和一个数据集(可以是DataFrame或数组的字典),为线性模型创建设计矩阵:
In [29]: data = pd.DataFrame({
....: 'x0': [1, 2, 3, 4, 5],
....: 'x1': [0.01, -0.01, 0.25, -4.1, 0.],
....: 'y': [-1.5, 0., 3.6, 1.3, -2.]})
In [30]: data
Out[30]:
x0 x1 y
0 1 0.01 -1.5
1 2 -0.01 0.0
2 3 0.25 3.6
3 4 -4.10 1.3
4 5 0.00 -2.0
In [31]: import patsy
In [32]: y, X = patsy.dmatrices('y ~ x0 + x1', data)
现在有:
In [33]: yOut[33]: DesignMatrix with shape (5, 1) y -1.5 0.0 3.6 1.3 -2.0 Terms: 'y' (column 0)In [34]: XOut[34]: DesignMatrix with shape (5, 3) Intercept x0 x1 1 1 0.01 1 2 -0.01 1 3 0.25 1 4 -4.10 1 5 0.00 Terms: 'Intercept' (column 0) 'x0' (column 1) 'x1' (column 2)
这些Patsy的DesignMatrix实例是NumPy的ndarray,带有附加元数据:
In [35]: np.asarray(y)Out[35]: array([[-1.5], [ 0. ], [ 3.6], [ 1.3], [-2. ]])In [36]: np.asarray(X)Out[36]: array([[ 1. , 1. , 0.01], [ 1. , 2. , -0.01], [ 1. , 3. , 0.25], [ 1. , 4. , -4.1 ], [ 1. , 5. , 0. ]])
你可能想Intercept是哪里来的。这是线性模型(比如普通最小二乘回归)的惯例用法。添加 +0 到模型可以不显示intercept:
In [37]: patsy.dmatrices('y ~ x0 + x1 + 0', data)[1]Out[37]: DesignMatrix with shape (5, 2) x0 x1 1 0.01 2 -0.01 3 0.25 4 -4.10 5 0.00 Terms: 'x0' (column 0) 'x1' (column 1)
Patsy对象可以直接传递到算法(比如numpy.linalg.lstsq)中,它执行普通最小二乘回归:
In [38]: coef, resid, _, _ = np.linalg.lstsq(X, y)
模型的元数据保留在design_info属性中,因此你可以重新附加列名到拟合系数,以获得一个Series,例如:
In [39]: coefOut[39]: array([[ 0.3129], [-0.0791], [-0.2655]])In [40]: coef = pd.Series(coef.squeeze(), index=X.design_info.column_names)In [41]: coefOut[41]: Intercept 0.312910x0 -0.079106x1 -0.265464dtype: float64
用Patsy公式进行数据转换
你可以将Python代码与patsy公式结合。在评估公式时,库将尝试查找在封闭作用域内使用的函数:
In [42]: y, X = patsy.dmatrices('y ~ x0 + np.log(np.abs(x1) + 1)', data)In [43]: XOut[43]: DesignMatrix with shape (5, 3) Intercept x0 np.log(np.abs(x1) + 1) 1 1 0.00995 1 2 0.00995 1 3 0.22314 1 4 1.62924 1 5 0.00000 Terms: 'Intercept' (column 0) 'x0' (column 1) 'np.log(np.abs(x1) + 1)' (column 2)
常见的变量转换包括标准化(平均值为0,方差为1)和中心化(减去平均值)。Patsy有内置的函数进行这样的工作:
In [44]: y, X = patsy.dmatrices('y ~ standardize(x0) + center(x1)', data)In [45]: XOut[45]: DesignMatrix with shape (5, 3) Intercept standardize(x0) center(x1) 1 -1.41421 0.78 1 -0.70711 0.76 1 0.00000 1.02 1 0.70711 -3.33 1 1.41421 0.77 Terms: 'Intercept' (column 0) 'standardize(x0)' (column 1) 'center(x1)' (column 2)
作为建模的一步,你可能拟合模型到一个数据集,然后用另一个数据集评估模型。另一个数据集可能是剩余的部分或是新数据。当执行中心化和标准化转变,用新数据进行预测要格外小心。因为你必须使用平均值或标准差转换新数据集,这也称作状态转换。
patsy.build_design_matrices函数可以使用原始样本数据集的保存信息,来转换新数据,:
In [46]: new_data = pd.DataFrame({ ....: 'x0': [6, 7, 8, 9], ....: 'x1': [3.1, -0.5, 0, 2.3], ....: 'y': [1, 2, 3, 4]})In [47]: new_X = patsy.build_design_matrices([X.design_info], new_data)In [48]: new_XOut[48]: [DesignMatrix with shape (4, 3) Intercept standardize(x0) center(x1) 1 2.12132 3.87 1 2.82843 0.27 1 3.53553 0.77 1 4.24264 3.07 Terms: 'Intercept' (column 0) 'standardize(x0)' (column 1) 'center(x1)' (column 2)]
因为Patsy中的加号不是加法的意义,当你按照名称将数据集的列相加时,你必须用特殊I函数将它们封装起来:
In [49]: y, X = patsy.dmatrices('y ~ I(x0 + x1)', data)In [50]: XOut[50]: DesignMatrix with shape (5, 2) Intercept I(x0 + x1) 1 1.01 1 1.99 1 3.25 1 -0.10 1 5.00 Terms: 'Intercept' (column 0) 'I(x0 + x1)' (column 1)
Patsy的patsy.builtins模块还有一些其它的内置转换。请查看线上文档。
分类数据有一个特殊的转换类,下面进行讲解。
分类数据和Patsy
非数值数据可以用多种方式转换为模型设计矩阵。完整的讲解超出了本书范围,最好和统计课一起学习。
当你在Patsy公式中使用非数值数据,它们会默认转换为虚变量。如果有截距,会去掉一个,避免共线性:
In [51]: data = pd.DataFrame({ ....: 'key1': ['a', 'a', 'b', 'b', 'a', 'b', 'a', 'b'], ....: 'key2': [0, 1, 0, 1, 0, 1, 0, 0], ....: 'v1': [1, 2, 3, 4, 5, 6, 7, 8], ....: 'v2': [-1, 0, 2.5, -0.5, 4.0, -1.2, 0.2, -1.7] ....: })In [52]: y, X = patsy.dmatrices('v2 ~ key1', data)In [53]: XOut[53]: DesignMatrix with shape (8, 2) Intercept key1[T.b] 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 Terms: 'Intercept' (column 0) 'key1' (column 1)
如果你从模型中忽略截距,每个分类值的列都会包括在设计矩阵的模型中:
In [54]: y, X = patsy.dmatrices('v2 ~ key1 + 0', data)In [55]: XOut[55]: DesignMatrix with shape (8, 2) key1[a] key1[b] 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 Terms: 'key1' (columns 0:2)
使用C函数,数值列可以截取为分类量:
In [56]: y, X = patsy.dmatrices('v2 ~ C(key2)', data)In [57]: XOut[57]: DesignMatrix with shape (8, 2) Intercept C(key2)[T.1] 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 Terms: 'Intercept' (column 0) 'C(key2)' (column 1)
当你在模型中使用多个分类名,事情就会变复杂,因为会包括key1:key2形式的相交部分,它可以用在方差(ANOVA)模型分析中:
In [58]: data['key2'] = data['key2'].map({0: 'zero', 1: 'one'})In [59]: dataOut[59]: key1 key2 v1 v20 a zero 1 -1.01 a one 2 0.02 b zero 3 2.53 b one 4 -0.54 a zero 5 4.05 b one 6 -1.26 a zero 7 0.27 b zero 8 -1.7In [60]: y, X = patsy.dmatrices('v2 ~ key1 + key2', data)In [61]: XOut[61]: DesignMatrix with shape (8, 3) Intercept key1[T.b] key2[T.zero] 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 Terms: 'Intercept' (column 0) 'key1' (column 1) 'key2' (column 2)In [62]: y, X = patsy.dmatrices('v2 ~ key1 + key2 + key1:key2', data)In [63]: XOut[63]: DesignMatrix with shape (8, 4) Intercept key1[T.b] key2[T.zero]key1[T.b]:key2[T.zero] 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 Terms: 'Intercept' (column 0) 'key1' (column 1) 'key2' (column 2) 'key1:key2' (column 3)
Patsy提供转换分类数据的其它方法,包括以特定顺序转换。请参阅线上文档。
13.3 statsmodels介绍
statsmodels是Python进行拟合多种统计模型、进行统计试验和数据探索可视化的库。Statsmodels包含许多经典的统计方法,但没有贝叶斯方法和机器学习模型。
statsmodels包含的模型有:
- 线性模型,广义线性模型和健壮线性模型
- 线性混合效应模型
- 方差(ANOVA)方法分析
- 时间序列过程和状态空间模型
- 广义矩估计
下面,我会使用一些基本的statsmodels工具,探索Patsy公式和pandasDataFrame对象如何使用模型接口。
估计线性模型
statsmodels有多种线性回归模型,包括从基本(比如普通最小二乘)到复杂(比如迭代加权最小二乘法)的。
statsmodels的线性模型有两种不同的接口:基于数组和基于公式。它们可以通过API模块引入:
import statsmodels.api as smimport statsmodels.formula.api as smf
为了展示它们的使用方法,我们从一些随机数据生成一个线性模型:
def dnorm(mean, variance, size=1): if isinstance(size, int): size = size, return mean + np.sqrt(variance) * np.random.randn(*size)# For reproducibilitynp.random.seed(12345)N = 100X = np.c_[dnorm(0, 0.4, size=N), dnorm(0, 0.6, size=N), dnorm(0, 0.2, size=N)]eps = dnorm(0, 0.1, size=N)beta = [0.1, 0.3, 0.5]y = np.dot(X, beta) + eps
这里,我使用了“真实”模型和可知参数beta。此时,dnorm可用来生成正态分布数据,带有特定均值和方差。现在有:
In [66]: X[:5]Out[66]: array([[-0.1295, -1.2128, 0.5042], [ 0.3029, -0.4357, -0.2542], [-0.3285, -0.0253, 0.1384], [-0.3515, -0.7196, -0.2582], [ 1.2433, -0.3738, -0.5226]])In [67]: y[:5]Out[67]: array([ 0.4279, -0.6735, -0.0909, -0.4895,-0.1289])
像之前Patsy看到的,线性模型通常要拟合一个截距。sm.add_constant函数可以添加一个截距的列到现存的矩阵:
In [68]: X_model = sm.add_constant(X)In [69]: X_model[:5]Out[69]: array([[ 1. , -0.1295, -1.2128, 0.5042], [ 1. , 0.3029, -0.4357, -0.2542], [ 1. , -0.3285, -0.0253, 0.1384], [ 1. , -0.3515, -0.7196, -0.2582], [ 1. , 1.2433, -0.3738, -0.5226]])
sm.OLS类可以拟合一个普通最小二乘回归:
In [70]: model = sm.OLS(y, X)
这个模型的fit方法返回了一个回归结果对象,它包含估计的模型参数和其它内容:
In [71]: results = model.fit()In [72]: results.paramsOut[72]: array([ 0.1783, 0.223 , 0.501 ])
对结果使用summary方法可以打印模型的详细诊断结果:
In [73]: print(results.summary())OLS Regression Results ==============================================================================Dep. Variable: y R-squared: 0.430Model: OLS Adj. R-squared: 0.413Method: Least Squares F-statistic: 24.42Date: Mon, 25 Sep 2017 Prob (F-statistic): 7.44e-12Time: 14:06:15 Log-Likelihood: -34.305No. Observations: 100 AIC: 74.61Df Residuals: 97 BIC: 82.42Df Model: 3 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975]------------------------------------------------------------------------------x1 0.1783 0.053 3.364 0.001 0.073 0.283x2 0.2230 0.046 4.818 0.000 0.131 0.315x3 0.5010 0.080 6.237 0.000 0.342 0.660==============================================================================Omnibus: 4.662 Durbin-Watson: 2.201Prob(Omnibus): 0.097 Jarque-Bera (JB): 4.098Skew: 0.481 Prob(JB): 0.129Kurtosis: 3.243 Cond. No.1.74==============================================================================Warnings:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
这里的参数名为通用名x1, x2等等。假设所有的模型参数都在一个DataFrame中:
In [74]: data = pd.DataFrame(X, columns=['col0', 'col1', 'col2'])In [75]: data['y'] = yIn [76]: data[:5]Out[76]: col0 col1 col2 y0 -0.129468 -1.212753 0.504225 0.4278631 0.302910 -0.435742 -0.254180 -0.6734802 -0.328522 -0.025302 0.138351 -0.0908783 -0.351475 -0.719605 -0.258215 -0.4894944 1.243269 -0.373799 -0.522629 -0.128941
现在,我们使用statsmodels的公式API和Patsy的公式字符串:
In [77]: results = smf.ols('y ~ col0 + col1 + col2', data=data).fit()In [78]: results.paramsOut[78]: Intercept 0.033559col0 0.176149col1 0.224826col2 0.514808dtype: float64In [79]: results.tvaluesOut[79]: Intercept 0.952188col0 3.319754col1 4.850730col2 6.303971dtype: float64
观察下statsmodels是如何返回Series结果的,附带有DataFrame的列名。当使用公式和pandas对象时,我们不需要使用add_constant。
给出一个样本外数据,你可以根据估计的模型参数计算预测值:
In [80]: results.predict(data[:5])Out[80]: 0 -0.0023271 -0.1419042 0.0412263 -0.3230704 -0.100535dtype: float64
statsmodels的线性模型结果还有其它的分析、诊断和可视化工具。除了普通最小二乘模型,还有其它的线性模型。
估计时间序列过程
statsmodels的另一模型类是进行时间序列分析,包括自回归过程、卡尔曼滤波和其它态空间模型,和多元自回归模型。
用自回归结构和噪声来模拟一些时间序列数据:
init_x = 4import randomvalues = [init_x, init_x]N = 1000b0 = 0.8b1 = -0.4noise = dnorm(0, 0.1, N)for i in range(N): new_x = values[-1] * b0 + values[-2] * b1 + noise[i] values.append(new_x)
这个数据有AR(2)结构(两个延迟),参数是0.8和-0.4。拟合AR模型时,你可能不知道滞后项的个数,因此可以用较多的滞后量来拟合这个模型:
In [82]: MAXLAGS = 5In [83]: model = sm.tsa.AR(values)In [84]: results = model.fit(MAXLAGS)
结果中的估计参数首先是截距,其次是前两个参数的估计值:
In [85]: results.paramsOut[85]: array([-0.0062, 0.7845, -0.4085, -0.0136, 0.015 , 0.0143])
更多的细节以及如何解释结果超出了本书的范围,可以通过statsmodels文档学习更多。
13.4 scikit-learn介绍
scikit-learn是一个广泛使用、用途多样的Python机器学习库。它包含多种标准监督和非监督机器学习方法和模型选择和评估、数据转换、数据加载和模型持久化工具。这些模型可以用于分类、聚合、预测和其它任务。
机器学习方面的学习和应用scikit-learn和TensorFlow解决实际问题的线上和纸质资料很多。本节中,我会简要介绍scikit-learn API的风格。
写作此书的时候,scikit-learn并没有和pandas深度结合,但是有些第三方包在开发中。尽管如此,pandas非常适合在模型拟合前处理数据集。
举个例子,我用一个Kaggle竞赛的经典数据集,关于泰坦尼克号乘客的生还率。我们用pandas加载测试和训练数据集:
In [86]: train = pd.read_csv('datasets/titanic/train.csv')In [87]: test = pd.read_csv('datasets/titanic/test.csv')In [88]: train[:4]Out[88]: PassengerId Survived Pclass \0 1 0 3 1 2 1 1 2 3 1 3 3 4 1 1 Name Sex Age SibSp \0 Braund, Mr. Owen Harris male 22.0 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 2 Heikkinen, Miss. Laina female 26.0 0 3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 Parch Ticket Fare Cabin Embarked 0 0 A/5 21171 7.2500 NaN S 1 0 PC 17599 71.2833 C85 C 2 0 STON/O2. 3101282 7.9250 NaN S 3 0 113803 53.1000 C123 S
statsmodels和scikit-learn通常不能接收缺失数据,因此我们要查看列是否包含缺失值:
In [89]: train.isnull().sum()Out[89]: PassengerId 0Survived 0Pclass 0Name 0Sex 0Age 177SibSp 0Parch 0Ticket 0Fare 0Cabin 687Embarked 2dtype: int64In [90]: test.isnull().sum()Out[90]: PassengerId 0Pclass 0Name 0Sex 0Age 86SibSp 0Parch 0Ticket 0Fare 1Cabin 327Embarked 0dtype: int64
在统计和机器学习的例子中,根据数据中的特征,一个典型的任务是预测乘客能否生还。模型现在训练数据集中拟合,然后用样本外测试数据集评估。
我想用年龄作为预测值,但是它包含缺失值。缺失数据补全的方法有多种,我用的是一种简单方法,用训练数据集的中位数补全两个表的空值:
In [91]: impute_value = train['Age'].median()In [92]: train['Age'] = train['Age'].fillna(impute_value)In [93]: test['Age'] = test['Age'].fillna(impute_value)
现在我们需要指定模型。我增加了一个列IsFemale,作为“Sex”列的编码:
In [94]: train['IsFemale'] = (train['Sex'] == 'female').astype(int)In [95]: test['IsFemale'] = (test['Sex'] == 'female').astype(int)
然后,我们确定一些模型变量,并创建NumPy数组:
In [96]: predictors = ['Pclass', 'IsFemale', 'Age']In [97]: X_train = train[predictors].valuesIn [98]: X_test = test[predictors].valuesIn [99]: y_train = train['Survived'].valuesIn [100]: X_train[:5]Out[100]: array([[ 3., 0., 22.], [ 1., 1., 38.], [ 3., 1., 26.], [ 1., 1., 35.], [ 3., 0., 35.]])In [101]: y_train[:5]Out[101]: array([0, 1, 1, 1, 0])
我不能保证这是一个好模型,但它的特征都符合。我们用scikit-learn的LogisticRegression模型,创建一个模型实例:
In [102]: from sklearn.linear_model import LogisticRegressionIn [103]: model = LogisticRegression()
与statsmodels类似,我们可以用模型的fit方法,将它拟合到训练数据:
In [104]: model.fit(X_train, y_train)Out[104]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
现在,我们可以用model.predict,对测试数据进行预测:
In [105]: y_predict = model.predict(X_test)In [106]: y_predict[:10]Out[106]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0])
如果你有测试数据集的真是值,你可以计算准确率或其它错误度量值:
(y_true == y_predict).mean()
在实际中,模型训练经常有许多额外的复杂因素。许多模型有可以调节的参数,有些方法(比如交叉验证)可以用来进行参数调节,避免对训练数据过拟合。这通常可以提高预测性或对新数据的健壮性。
交叉验证通过分割训练数据来模拟样本外预测。基于模型的精度得分(比如均方差),可以对模型参数进行网格搜索。有些模型,如logistic回归,有内置的交叉验证的估计类。例如,logisticregressioncv类可以用一个参数指定网格搜索对模型的正则化参数C的粒度:
In [107]: from sklearn.linear_model import LogisticRegressionCVIn [108]: model_cv = LogisticRegressionCV(10)In [109]: model_cv.fit(X_train, y_train)Out[109]: LogisticRegressionCV(Cs=10, class_weight=None, cv=None, dual=False, fit_intercept=True, intercept_scaling=1.0, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbose=0)
要手动进行交叉验证,你可以使用cross_val_score帮助函数,它可以处理数据分割。例如,要交叉验证我们的带有四个不重叠训练数据的模型,可以这样做:
In [110]: from sklearn.model_selection import cross_val_scoreIn [111]: model = LogisticRegression(C=10)In [112]: scores = cross_val_score(model, X_train, y_train, cv=4)In [113]: scoresOut[113]: array([ 0.7723, 0.8027, 0.7703, 0.7883])
默认的评分指标取决于模型本身,但是可以明确指定一个评分。交叉验证过的模型需要更长时间来训练,但会有更高的模型性能。
13.5 继续学习
我只是介绍了一些Python建模库的表面内容,现在有越来越多的框架用于各种统计和机器学习,它们都是用Python或Python用户界面实现的。
这本书的重点是数据规整,有其它的书是关注建模和数据科学工具的。其中优秀的有:
- Andreas Mueller and Sarah Guido (O’Reilly)的 《Introduction to Machine Learning with Python》
- Jake VanderPlas (O’Reilly)的 《Python Data Science Handbook》
- Joel Grus (O’Reilly) 的 《Data Science from Scratch: First Principles》
- Sebastian Raschka (Packt Publishing) 的《Python Machine Learning》
- Aurélien Géron (O’Reilly) 的《Hands-On Machine Learning with Scikit-Learn and TensorFlow》
虽然书是学习的好资源,但是随着底层开源软件的发展,书的内容会过时。最好是不断熟悉各种统计和机器学习框架的文档,学习最新的功能和API。