<QluOJ2018NewCode>约数个数
题目描述
p^q表示p的q次方,正整数M可以分解为M=(p1^a1)*(p2^a2)*(p3^a3)*……*(pn^an)的形式,其中p1,p2……pn为质数(大于1并且只能被1和自身整除的数叫做质数)。a1,a2……an为整数。例如18=(2^1)*(3^2),45=(3^2)*(5^1)。
给出n和一个质数g,以及正整数M分解后的形式,求M的所有约数中,有多少能被g整除。
输入
第一行 两个数 n和g。 0<n<=10 1<g<100。g为质数。
第二行 n个数 p1到pn 1<pi<100 pi为质数(1<=i<=n)。
第三行 n个数 a1到an 0<=ai<=20 ai为整数(1<=i<=n)。
保证对于任意的i,j(i != j) ,pi != pj
输出
一个数
表示M的所有约数中,有多少能被g整除。
样例输入
2 3 3 5 2 2
样例输出
6
提示
样例解释:
M=(3^2)*(5^2)=9*25=225
225能被3整除的约数有3 9 15 45 75 225 共6个。
(划重点)
算了懒得打字了..直接安利吧
blog:https://blog.csdn.net/QLU_minoz/article/details/84558501
#include<cstdio> #include<iostream> using namespace std; int a[105],b[105],c[105]; int main(){ int n,g; cin>>n>>g; long long ans=0; int x=0; for(int i=1;i<=n;i++){ cin>>a[i]; if(a[i]==g){ x=i; } } int pn; for(int i=1;i<=n;i++){ cin>>b[i]; if(i==x){ pn=b[i]; } } ans=pn; for(int i=1;i<=n;i++){ if(i!=x){ ans+=ans*b[i]; } } if(x==0){ cout<<0; }else{ cout<<ans; } return 0; }