poj 2140 Herd Sums(等差数列)

题目链接:http://poj.org/problem?id=2140

题意:给出n,求一共有多少个连续的数满足加和恰好得到n,

思路:这题想了好久一开始以为是打表找规律,后来才发现与等差数列有关。。。(这题也可以用DP来做)

根据等差数列求和公式S=(a1+an)*n/2和末项公式an=a1+(n-1)*d(d位公差)得a1=(2*s+n-n*n)/2/n;得出求a1的公式然后对所有的n(n为项数)进行枚举,得出结果

2*s=(2*a1+n-1)*n,因为2*S必为偶数所以n为偶数或者(2*a1+n-1)为偶数且a1不等于0

#include <iostream>
#include <cmath>

using namespace std;

int n,m;

int main()
{
    ios::sync_with_stdio(false);
    cin>>n;

    int N=sqrt(2*n);
    int ans=0;

    for(int i=1;i<=N;i++)
    {
        m=(2*n-i*(i-1))/2/i;
        if(2*n==(2*m*i+i*i-i)&&m>0&&(i%2==0||(2*m+i-1)%2==0))
        {
            ans++;
        }
    }
    cout<<ans<<endl;
    return 0;
}

 

posted @ 2018-05-08 21:12  Somnus、M  阅读(177)  评论(0编辑  收藏  举报