day20
洛谷说的可真准!,T1T3爆0;
T1疑似因为复杂度过高全T,T3垃圾题面;
T2暴力得了20;
总得分20/300自闭ing
T1递推
#include<iostream> #include<cstdio> #include<cctype> #include<algorithm> using namespace std; struct node{ long long a,b; }e[1010][1010]; long long f[1010*1010]; int n,m,tot,bef[1010*1010]; long long ans; inline int read() { int x=0;char c=getchar(); while(!isdigit(c))c=getchar(); while(isdigit(c)){x=(x<<3)+(x<<1)+(c^48);c=getchar();} return x; } struct travel { int x,y,hgd; }dian[1010*1010+1]; inline int abs(int x){return x>0?x:-x;} inline long long manhadun(long long i,long long j){return 1LL*abs(dian[i].x-dian[j].x)+1LL*abs(dian[i].y-dian[j].y);} inline int cmp(travel a,travel b){return a.hgd<b.hgd;} int main() { n=read();m=read(); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) e[i][j].a=read(); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) { e[i][j].b=read(); if(!e[i][j].a&&!e[i][j].b)continue; dian[++tot].x=i; dian[tot].y=j; dian[tot].hgd=e[i][j].a; } sort(dian+1,dian+1+tot,cmp); for(int i=1;i<=tot;i++) { int j=max(bef[i-1],1); for(;j<i;j++) { if(dian[i].hgd>dian[j].hgd) { if(f[i]<f[j]+manhadun(i,j)) { f[i]=f[j]+manhadun(i,j); bef[i]=j; } } } f[i]=f[i]+1LL*e[dian[i].x][dian[i].y].b; ans=ans>f[i]?ans:f[i]; } cout<<ans<<endl; return 0; }
解释不了,全靠自己理解了
T2卡特兰数+递推+矩乘优化
#include<bits/stdc++.h> #define MOD 1000000007LL #define oyy main using namespace std; int n,m; struct node{ long long a[110][110]; }ans,f,dt; inline void X(node x,node y) { memset(ans.a,0,sizeof(ans.a)); for(int i=1;i<=m/2;i++) for(int j=1;j<=m/2;j++) for(int k=1;k<=m/2;k++) ans.a[i][j]=(ans.a[i][j]+x.a[i][k]*y.a[k][j])%MOD; } inline void ksm(int x) { if(!x)return; if(x%2==1)ksm(x-1);else ksm(x/2); if(x%2==1)X(ans,f);else X(ans,ans); } int oyy() { std::ios::sync_with_stdio(false); cin>>n>>m; dt.a[1][1]=1; for(int i=1;i<m;i++) for(int j=1;j<=m/2;j++) if(dt.a[i][j]) { dt.a[i+1][j+1]=(dt.a[i][j]+dt.a[i+1][j+1])%MOD; dt.a[i+1][j-1]=(dt.a[i][j]+dt.a[i+1][j-1])%MOD; } for(int i=1;i<=m/2;i++)f.a[1][i]=(dt.a[i*2][0]*2)%MOD; for(int i=2;i<=m/2;i++)f.a[i][i-1]=1; for(int i=1;i<=m/2;i++)ans.a[i][i]=1; ksm(n/2); cout<<ans.a[1][1]<<endl; return 0; }
T3类欧||数位DP
T3咕咕咕;
等我真正学会类欧再回来
贴两个大佬的题解
完。