POJ 1830 开关问题 高斯消元
题目链接: http://poj.org/problem?id=1830
题目描述: 给出开关的初始, 末状态, 再给出互相影响的开关关系, 输出有几种方式可以从初始到结束状态
解题思路: 这是个高斯消元题.....题单可能是放错了吧.....解的个数为2^(自由变元的个数)
代码:
#include <iostream> #include <cstdio> #include <string> #include <vector> #include <cstring> #include <iterator> #include <cmath> #include <algorithm> #include <stack> #include <deque> #include <map> #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #define mem0(a) memset(a,0,sizeof(a)) #define sca(x) scanf("%d",&x) #define de printf("=======\n") typedef long long ll; using namespace std; const int maxn = 40; int a[maxn][maxn];; int n; int s[maxn]; int e[maxn]; int gauss() { int i; int j; for( i = 1, j = 1; i <= n && j <= n; j++ ) { int k = i; for( k = i; k <= n; k++ ) { if( a[k][j] ) break; } if( a[k][j] ) { for( int r = 1; r <= n+1; r++ ) { swap(a[i][r], a[k][r]); } for( int r = 1; r <= n; r++ ) { if( r != i && a[r][j] ) { for( int k = 1; k <= n+1; k++ ) { a[r][k] ^= a[i][k]; } } } i++; } } for( int j = i; j <= n; j++ ) { if( a[j][n+1] ) return -1; } return 1<<(n-i+1); } int main() { int t; sca(t); while( t-- ) { sca(n); mem0(a); for( int i = 1; i <= n; i++ ) { sca(s[i]); } for( int i = 1; i <= n; i++ ) { sca(e[i]); a[i][n+1] = s[i] ^ e[i]; a[i][i] = 1; } int x, y; while( scanf( "%d%d", &x, &y ) && x+y ) { a[y][x] = 1; } int ans = gauss(); if( ans == -1 ) { printf( "Oh,it's impossible~!!\n" ); } else { printf( "%d\n", ans ); } } }
思考: 有空应该回顾一下高斯消元和fft这种模板的, 等我这两个专题刷完的吧, 不复习有点儿忘了感觉.....是时候应该学习高数了......
posted on 2017-08-28 18:16 FriskyPuppy 阅读(84) 评论(0) 编辑 收藏 举报