note of introduction of Algorithms(Lecture 2)
Lecture 2
The lecture 2 is mainly about mathematical things, no algorithms. At the beginning of this class, teacher review those asymptotical annotations definition like Θ, ω, etc. Then, three methods to solving the recursive problems analysis such as subsititute method, recursion-tree method and master method has been given in turn.
honestly, I don't understood the content of this class completelly when I see this open class video.It's seems too abstractive to hold, may be a little boring:( i think. So, I read inrelated chapters(chapter 2, chapter 4)of the book(instruction of Algorithms) in chinese later and summarize this note.
- asymptotical annotation
big Θ: Θ(g(n)) = f(n); where n ≥ n0, 0 < c1*g(n) < f(n) < c2*g(n)
big Ο: O(g(n)) = f(n); where n ≥ n0, 0 < f(n) < c*g(n)
big Ω: Ω(g(n)) = f(n); for all n ≥ n0, 0 < c*g(n) < f(n)
Solving recurences
- subsititude method
the subsitude method has three general steps:
- Guess the form of the solution;
- verify by induction;
- solve for constants;
For examplt: T(n) = 4(T4/2) + n; Guess T(k) = c1*k2-c2*k
= 4(c1*(n/2)2-c2*(n/2)) + n
= c1*n2 - c2*n - (c2-1)*n; if c2 ≥ 1
- recursion-tree method
Recursion-tree methods models the costs of a recursive execution of an algorithm.
The recursion-tree methodexpress the recursive process as a tree, and the result of the recursive equals to the sum of the all nodes of this tree. See the following example:
- master method
The master method is used to resolve the recurrences the form like T(n) = a* T(n/b) + f(n) where a ≥ 1, b > 1, and f is asymptotically positive. The master method depends on tree common case(cont.) as follow:
For example:
T(n) = 4(Tn/2) +n
a = 4, b = 2 -> nlogba=n2; case 1:f(n) = O(n2-1) for ξ = 1;
So the common case 1 is applied, T(n) = Θ(n2)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)