『笔记』2-SAT
前置
\(SAT\) 是适定性( \(Satisfiability\) )问题的简称。一般形式为 \(k \ -\) 适定性问题,简称 \(k-SAT\) 。而当 \(k>2\) 时该问题为 \(NP\) 完全的。所以我们只研究 \(k=2\) 的情况。
定义
\(2-SAT\) ,简单的说就是给出 \(n\) 个集合,每个集合有两个元素,已知若干个 \(<a,b>\) ,表示 \(a\) 与 \(b\) 矛盾(其中 \(a\) 与 \(b\) 属于不同的集合)。然后从每个集合选择一个元素,判断能否一共选 \(n\) 个两两不矛盾的元素。显然可能有多种选择方案,一般题中只需要求出一种即可。
有学长者云:
有 \(n\) 个 \(01\) 变量 \(x_1∼x_n\),另有 \(m\) 个变量取值需要满足的限制。
每个限制是一个 $$ 元组 \((x_{p1},x_{p2},\dots,x_{pk})\) ,满足 \(x_{p1} \oplus x_{p2} \oplus \dots \oplus x_{pk} = a\) 。其中 \(a\) 是 \(0/1\) ,\(\oplus\) 是某种二元 \(bool\) 运算。
要求构造一种满足所有限制的变量的赋值方案。
\(2-SAT\) 问题是通过建立图论模型,在 \(O(n+m)\) 的时间复杂度内判断是否有解,若有解可以构造出一组合法解。
思路
值得注意的是在不同的题目中二元 \(bool\) 运算可能有差异,但是建图的基本思路大致相同。
来观摩一组 OI-Wiki
的例子:
比如邀请人来吃喜酒,夫妻二人必须去一个,然而某些人之间有矛盾(比如 \(A\) 先生与 \(B\) 女士有矛盾, \(C\) 女士不想和 \(D\) 先生在一起),那么我们要确定能否避免来人之间没有矛盾,有时需要方案。这是一类生活中常见的问题。
使用布尔方程表示上述问题。设 \(a\) 表示 \(A\) 先生去参加,那么 \(B\) 女士就不能参加( \(\lnot a\)); \(b\) 表示 C 女士参加,那么 \(\lnot b\) 也一定成立( \(D\) 先生不参加)。总结一下,即 \((a \lor b)\) (变量 \(a\) , \(b\) 至少满足一个)。对这些变量关系建有向图,则有:\(\lnot a \Rightarrow b \land \lnot b \Rightarrow a\) ( \(a\) 不成立则 \(b\) 一定成立;同理,\(b\) 不成立则 \(a\) 一定成立)。建图之后,我们就可以使用缩点算法来求解 \(2-SAT\) 问题了。
核心
Tarjan 缩点大法
\(Tarjan\) 大法好!
主要还是考虑如何更合适地建图。
再来一组例子:
假设有 \(a_1\) 、 \(b_2\) 和 \(a_2\) 、 \(b_1\) 两对,已知 \(a_1\) 和 \(b_2\) 间有矛盾,于是为了方案自洽,由于两者中必须选一个,所以我们就要拉两条有向边 \((a_1,b_1)\) 和 \((b_2,a_2)\) 表示选了 \(a_1\) 则必须选 \(b_1\) ,选了 \(b_2\) 则必须选 \(a_2\) 才能够自洽。
然后通过这样建边再跑一遍 \(Tarjan\) 判断是否有一个集合中的两个元素在同一个强连通分量中,若有则不可能,否则输出方案。构造方案只需要把几个不矛盾的强连通分量拼起来就好了。
-
输出方案时可以通过变量在图中的拓扑序确定该变量的取值。如果变量 \(\lnot x\) 的拓扑序在 \(x\) 之后,那么取 \(x\) 值为真。应用到 \(Tarjan\) 算法的缩点,即 \(x\) 所在强连通分量编号在 \(\lnot x\) 之前时,取 \(x\) 为真。因为 \(Tarjan\) 算法求强连通分量时使用了栈,所以 \(Tarjan\) 求得的强连通分量编号相当于反拓扑序。
-
时间复杂度为 \(O(n+m)\) 。
暴力DFS
\(Tarjan\) 好? \(DFS\) 表示不服。\(DFS\) 大法妙!
直接选取图上一个点,沿着一条路径搜下去,如果一个点被选择了,那么这条路径以后的点都将被选择。
如果出现一个集合中的两者都被选择了,那么此即为矛盾情况。
例题
真·模板题
思路
-
这是一道模板题。
-
显而易见每个变量 \(x_i\) 都可以被分开存储,即拆分成 \(i\) 和 \(i+n\) ,分别表示 \(x_i=1\) 和 \(x_i=0\) ,则这两个事件是互斥的。
-
对于限制 \(x_i\) 的每个命题 \(a\) 和 \(b\) ,一定有一个为真,则可以写成
那么由此可连边建图 \((\lnot a,b)\) , \((\lnot b,a)\) 。
-
在该图中,若节点 \(i\) 与 \(i+n\) 在同一个强连通分量中,即允许互相到达,则它们分别代表的互斥事件会同时发生,说明存在矛盾,即不存在一组合法的方案。
-
否则则有解。
-
构造合法解:
-
对原图缩点得到一张 \(DAG\) 。
-
对于变量 \(x_i\),考察节点 \(i\) 与 \(i+n\) 所在强连通分量的拓扑关系。若两分量不连通,则 \(xi\) 可取任意一个值。否则只能取属于拓扑序较大的分量的值。因为若取拓扑序较小的值,可以根据逻辑关系推出取另一个值也是同时发生的。
by @LuckyBlock
-
-
\(Tarjan\) 算法赋给强连通分量的编号顺序与拓扑序是相反的,上文已有说明。
CODE
/*
Name: P4782 【模板】2-SAT 问题
By Frather_
*/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
using namespace std;
/*=========================================快读*/
int read()
{
int x = 0, f = 1;
char c = getchar();
while (c < '0' || c > '9')
{
if (c == '-')
f = -1;
c = getchar();
}
while (c >= '0' && c <= '9')
{
x = (x << 3) + (x << 1) + (c ^ 48);
c = getchar();
}
return x * f;
}
/*=====================================定义变量*/
int n, m;
const int _ = 5000050;
struct edge
{
int to;
int nxt;
} e[_];
int cnt, head[_];
int dfn[_], low[_], num;
int bel[_], b_num;
stack<int> s;
/*===================================自定义函数*/
void add(int from, int to)
{
e[++cnt].to = to;
e[cnt].nxt = head[from];
head[from] = cnt;
}
void Tarjan(int u_)
{
dfn[u_] = low[u_] = ++num;
s.push(u_);
for (int i = head[u_]; i; i = e[i].nxt)
{
int v_ = e[i].to;
if (!dfn[v_])
{
Tarjan(v_);
low[u_] = min(low[u_], low[v_]);
}
else if (!bel[v_])
low[u_] = min(low[u_], dfn[v_]);
}
if (dfn[u_] == low[u_])
{
b_num++;
while (true)
{
int t = s.top();
s.pop();
bel[t] = b_num;
if (t == u_)
break;
}
}
return;
}
/*=======================================主函数*/
int main()
{
n = read();
m = read();
for (int i = 1; i <= m; i++)
{
int x = read();
int a = read();
int y = read();
int b = read();
if (a && b)
{
add(x + n, y);
add(y + n, x);
}
if (!a && b)
{
add(x, y);
add(y + n, x + n);
}
if (!a && !b)
{
add(x, y + n);
add(y, x + n);
}
if (a && !b)
{
add(x + n, y + n);
add(y, x);
}
}
for (int i = 1; i <= n * 2; i++)
{
if (!dfn[i])
Tarjan(i);
if (i <= n && bel[i] == bel[i + n])
{
printf("IMPOSSIBLE\n");
return 0;
}
}
printf("POSSIBLE\n");
for (int i = 1; i <= n; i++)
printf("%d ", bel[i] < bel[i + n]);
return 0;
}
写在最后
-
最近被教练抓颓抓得好苦啊\kk
-
再次向已逝去的学长致敬(((不是
-
鸣谢:
-
《算法竞赛进阶指南》
-
@LuckyBlock
-