机器学习 实验三 朴素贝叶斯算法及应用
【实验目的】
理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
掌握常见的高斯模型,多项式模型和伯努利模型;
能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
【实验内容】
实现高斯朴素贝叶斯算法。
熟悉sklearn库中的朴素贝叶斯算法;
针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
【实验报告要求】
对照实验内容,撰写实验过程、算法及测试结果;
代码规范化:命名规则、注释;
分析核心算法的复杂度;
查阅文献,讨论各种朴素贝叶斯算法的应用场景;
讨论朴素贝叶斯算法的优缺点。