转--python之正则入门
1. 正则表达式基础
1.1. 简单介绍
正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了。
下图展示了使用正则表达式进行匹配的流程:
正则表达式的大致匹配过程是:依次拿出表达式和文本中的字符比较,如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。如果表达式中有量词或边界,这个过程会稍微有一些不同,但也是很好理解的,看下图中的示例以及自己多使用几次就能明白。
下图列出了Python支持的正则表达式元字符和语法:
1.2. 数量词的贪婪模式与非贪婪模式
正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab*?",将找到"a"。
1.3. 反斜杠的困扰
与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。
1.4. 匹配模式
正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,这部分内容将在Pattern类的工厂方法re.compile(pattern[, flags])中一起介绍。
2. re模块
2.1. 开始使用re
Python通过re模块提供对正则表达式的支持。使用re的一般步骤是先将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# encoding: UTF-8 import re # 将正则表达式编译成Pattern对象 pattern = re. compile (r 'hello' ) # 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None match = pattern.match( 'hello world!' ) if match: # 使用Match获得分组信息 print match.group() ### 输出 ### # hello |
re.compile(strPattern[, flag]):
这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。
可选值有:
- re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
- M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
- S(DOTALL): 点任意匹配模式,改变'.'的行为
- L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
- U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
- X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:
1
2
3
4
|
a = re. compile (r """\d + # the integral part \. # the decimal point \d * # some fractional digits""" , re.X) b = re. compile (r "\d+\.\d*" ) |
re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:
1
2
|
m = re.match(r 'hello' , 'hello world!' ) print m.group() |
re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。
2.2. Match
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
- string: 匹配时使用的文本。
- re: 匹配时使用的Pattern对象。
- pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
- lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
- group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。 - groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。 - groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。 - start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。 - end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。 - span([group]):
返回(start(group), end(group))。 - expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
import re m = re.match(r '(\w+) (\w+)(?P<sign>.*)' , 'hello world!' ) print "m.string:" , m.string print "m.re:" , m.re print "m.pos:" , m.pos print "m.endpos:" , m.endpos print "m.lastindex:" , m.lastindex print "m.lastgroup:" , m.lastgroup print "m.group(1,2):" , m.group( 1 , 2 ) print "m.groups():" , m.groups() print "m.groupdict():" , m.groupdict() print "m.start(2):" , m.start( 2 ) print "m.end(2):" , m.end( 2 ) print "m.span(2):" , m.span( 2 ) print r "m.expand(r'\2 \1\3'):" , m.expand(r '\2 \1\3' ) ### output ### # m.string: hello world! # m.re: <_sre.SRE_Pattern object at 0x016E1A38> # m.pos: 0 # m.endpos: 12 # m.lastindex: 3 # m.lastgroup: sign # m.group(1,2): ('hello', 'world') # m.groups(): ('hello', 'world', '!') # m.groupdict(): {'sign': '!'} # m.start(2): 6 # m.end(2): 11 # m.span(2): (6, 11) # m.expand(r'\2 \1\3'): world hello! |
2.3. Pattern
Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。
Pattern不能直接实例化,必须使用re.compile()进行构造。
Pattern提供了几个可读属性用于获取表达式的相关信息:
- pattern: 编译时用的表达式字符串。
- flags: 编译时用的匹配模式。数字形式。
- groups: 表达式中分组的数量。
- groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
import re p = re. compile (r '(\w+) (\w+)(?P<sign>.*)' , re.DOTALL) print "p.pattern:" , p.pattern print "p.flags:" , p.flags print "p.groups:" , p.groups print "p.groupindex:" , p.groupindex ### output ### # p.pattern: (\w+) (\w+)(?P<sign>.*) # p.flags: 16 # p.groups: 3 # p.groupindex: {'sign': 3} |
实例方法[ | re模块方法]:
- match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。
pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。
示例参见2.1小节。 - search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。
pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
12345678910111213141516# encoding: UTF-8
import
re
# 将正则表达式编译成Pattern对象
pattern
=
re.
compile
(r
'world'
)
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match
=
pattern.search(
'hello world!'
)
if
match:
# 使用Match获得分组信息
print
match.group()
### 输出 ###
# world
- split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。
1234567import
re
p
=
re.
compile
(r
'\d+'
)
print
p.split(
'one1two2three3four4'
)
### output ###
# ['one', 'two', 'three', 'four', '']
- findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。
1234567import
re
p
=
re.
compile
(r
'\d+'
)
print
p.findall(
'one1two2three3four4'
)
### output ###
# ['1', '2', '3', '4']
- finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
12345678import
re
p
=
re.
compile
(r
'\d+'
)
for
m
in
p.finditer(
'one1two2three3four4'
):
print
m.group(),
### output ###
# 1 2 3 4
- sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
123456789101112131415import
re
p
=
re.
compile
(r
'(\w+) (\w+)'
)
s
=
'i say, hello world!'
print
p.sub(r
'\2 \1'
, s)
def
func(m):
return
m.group(
1
).title()
+
' '
+
m.group(
2
).title()
print
p.sub(func, s)
### output ###
# say i, world hello!
# I Say, Hello World!
- subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。
123456789101112131415import
re
p
=
re.
compile
(r
'(\w+) (\w+)'
)
s
=
'i say, hello world!'
print
p.subn(r
'\2 \1'
, s)
def
func(m):
return
m.group(
1
).title()
+
' '
+
m.group(
2
).title()
print
p.subn(func, s)
### output ###
# ('say i, world hello!', 2)
# ('I Say, Hello World!', 2)
以上就是Python对于正则表达式的支持。熟练掌握正则表达式是每一个程序员必须具备的技能,这年头没有不与字符串打交道的程序了。笔者也处于初级阶段,与君共勉,^_^
另外,图中的特殊构造部分没有举出例子,用到这些的正则表达式是具有一定难度的。有兴趣可以思考一下,如何匹配不是以abc开头的单词,^_^
全文结束
Python 正则表达式入门(初级篇)
本文主要为没有使用正则表达式经验的新手入门所写。
转载请写明出处
引子
首先说 正则表达式是什么?
正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(英语:Regular Expression,在代码中常简写为regex、regexp或RE),计算机科学的一个概念。正则表达式使用单个字符串来描述、匹配一系列匹配某个句法规则的字符串。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。
许多程序设计语言都支持利用正则表达式进行字符串操作。例如,在Perl中就内建了一个功能强大的正则表达式引擎。正则表达式这个概念最初是由Unix中的工具软件(例如sed和grep)普及开的。正则表达式通常缩写成“regex”,单数有regexp、regex,复数有regexps、regexes、regexen。
引用自维基百科https://zh.wikipedia.org/wiki/%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F
定义是定义,太正经了就没法用了。我们来举个栗子:假如你在写一个爬虫,你得到了
一个网页的HTML源码。其中有一段
<html><body><h1>hello world<h1></body></html>
你想要把这个hello world提取出来,但你这时如果只会python 的字符串处理,那么第一反应可能是
s = <html><body><h1>hello world<h1></body></html>
start_index = s.find('<h1>')
然后从这个位置向下查找到下一个<h1>
出现这样做未尝不可,但是很麻烦不是吗。需要考虑多个标签,一不留神就多匹配到东西了,而如果想要非常准确的匹配到,又得多加循环判断,效率太低。
这时候,正则表达式就是首选的帮手。
干货开始
入门级别
接着说我们刚才那个例子。我们如果拿正则处理这个表达式要怎么做呢?
import re
key = r"<html><body><h1>hello world<h1></body></html>"#这段是你要匹配的文本
p1 = r"(?<=<h1>).+?(?=<h1>)"#这是我们写的正则表达式规则,你现在可以不理解啥意思
pattern1 = re.compile(p1)#我们在编译这段正则表达式
matcher1 = re.search(pattern1,key)#在源文本中搜索符合正则表达式的部分
print matcher1.group(0)#打印出来
你可以尝试运行上面的代码,看看是不是和我们想象的一样(博主是在python2.7环境下)发现代码挺少挺简单?往下看。而且正则表达式实际上要比看起来的那种奇形怪状要简单得多。
首先,从最基础的正则表达式说起。
假设我们的想法是把一个字符串中的所有"python"给匹配到。我们试一试怎么做
import re
key = r"javapythonhtmlvhdl"#这是源文本
p1 = r"python"#这是我们写的正则表达式
pattern1 = re.compile(p1)#同样是编译
matcher1 = re.search(pattern1,key)#同样是查询
print matcher1.group(0)
看完这段代码,你是不是觉得:卧槽?这就是正则表达式?直接写上去就行?
确实,正则表达式并不像它表面上那么奇葩,如果不是我们故意改变一些符号的含义时,你看到的就是想要匹配的。
所以,先把大脑清空,先认为正则表达式就是和想要匹配的字符串长得一样。在之后的练习中我们会逐步进化
初级
0.无论是python还是正则表达式都是区分大小写的,所以当你在上面那个例子上把"python"换成了"Python",那就匹配不到你心爱的python了。
1.重新回到第一个例子中那个<h1>hello world<h1>
匹配。假如我像这么写,会怎么样?
import re
key = r"<h1>hello world<h1>"#源文本
p1 = r"<h1>.+<h1>"#我们写的正则表达式,下面会将为什么
pattern1 = re.compile(p1)
print pattern1.findall(key)#发没发现,我怎么写成findall了?咋变了呢?
有了入门级的经验,我们知道那两个<h1>
就是普普通通的字符,但是中间的是什么鬼?.
字符在正则表达式代表着可以代表任何一个字符(包括它本身)
findall返回的是所有符合要求的元素列表,包括仅有一个元素时,它还是给你返回的列表。
机智如你可能会突然问:那我如果就只是想匹配"."呢?结果啥都给我返回了咋整?在正则表达式中有一个字符\
,其实如果你编程经验较多的话,你就会发现这是好多地方的“转义符”。在正则表达式里,这个符号通常用来把特殊的符号转成普通的,把普通的转成特殊的23333(并不是特殊的“2333”,写完才发现会不会有脑洞大的想歪了)。
举个栗子,你真的想匹配"chuxiuhong@hit.edu.cn"这个邮箱(我的邮箱),你可以把正则表达式写成下面这个样子:
import re
key = r"afiouwehrfuichuxiuhong@hit.edu.cnaskdjhfiosueh"
p1 = r"chuxiuhong@hit\.edu\.cn"
pattern1 = re.compile(p1)
print pattern1.findall(key)
发现了吧,我们在.
的前面加上了转义符\
,但是并不是代表匹配“\.”的意思,而是只匹配“.”的意思!
不知道你细不细心,有没有发现我们第一次用.
时,后面还跟了一个+
?那这个加号是干什么的呢?
其实不难想,我们说了“.
字符在正则表达式代表着可以代表任何一个字符(包括它本身)”,但是"hello world"可不是一个字符啊。+
的作用是将前面一个字符或一个子表达式重复一遍或者多遍。
比方说表达式“ab+”那么它能匹配到“abbbbb”,但是不能匹配到"a",它要求你必须得有个b,多了不限,少了不行。你如果问我有没有那种“有没有都行,有多少都行的表达方式”,回答是有的。*
跟在其他符号后面表达可以匹配到它0次或多次
比方说我们在王叶内遇到了链接,可能既有http://开头的,又有https://开头的,我们怎么处理?
import re
key = r"http://www.nsfbuhwe.com and https://www.auhfisna.com"#胡编乱造的网址,别在意
p1 = r"https*://"#看那个星号!
pattern1 = re.compile(p1)
print pattern1.findall(key)
输出
['http://', 'https://']
2.比方说我们有这么一个字符串"cat hat mat qat",你会发现前面三个是实际的单词,最后那个是我胡编乱造的(上百度查完是昆士兰英语学院的缩写= =)。如果你本来就知道"at"前面是c、h、m其中之一时这才构成单词,你想把这样的匹配出来。根据已经学到的知识是不是会想到写出来三个正则表达式进行匹配?实际上不需要。因为有一种多字符匹方式[]
代表匹配里面的字符中的任意一个
还是举个栗子,我们发现啊,有的程序员比较过分,,在<html></html>
这对标签上,大小写混用,老害得我们抓不到想要的东西,我们该怎么应对?是写16*16种正则表达式挨个匹配?no
import re
key = r"lalala<hTml>hello</Html>heiheihei"
p1 = r"<[Hh][Tt][Mm][Ll]>.+?</[Hh][Tt][Mm][Ll]>"
pattern1 = re.compile(p1)
print pattern1.findall(key)
输出
['<hTml>hello</Html>']
我们既然有了范围性的匹配,自然有范围性的排除。[^]
代表除了内部包含的字符以外都能匹配
还是cat,hat,mat,qat这个例子,我们想匹配除了qat以外的,那么就应该这么写:
import re
key = r"mat cat hat pat"
p1 = r"[^p]at"#这代表除了p以外都匹配
pattern1 = re.compile(p1)
print pattern1.findall(key)
输出
为了方便我们写简洁的正则表达式,它本身还提供下面这样的写法
正则表达式 | 代表的匹配字符 |
---|---|
[0-9] | 0123456789任意之一 |
[a-z] | 小写字母任意之一 |
[A-Z] | 大写字母任意之一 |
\d | 等同于[0-9] |
\D | 等同于[^0-9]匹配非数字 |
\w | 等同于[a-z0-9A-Z_]匹配大小写字母、数字和下划线 |
\W | 等同于[^a-z0-9A-Z_]等同于上一条取非 |
3.介绍到这里,我们可能已经掌握了大致的正则表达式的构造方式,但是我们常常会在实战中遇到一些匹配的不准确的问题。比方说:
import re
key = r"chuxiuhong@hit.edu.cn"
p1 = r"@.+\."#我想匹配到@后面一直到“.”之间的,在这里是hit
pattern1 = re.compile(p1)
print pattern1.findall(key)
输出结果
['@hit.edu.']
呦呵!你咋能多了呢?我理想的结果是@hit.
,你咋还给我加量了呢?这是因为正则表达式默认是“贪婪”的,我们之前讲过,“+”代表是字符重复一次或多次。但是我们没有细说这个多次到底是多少次。所以它会尽可能“贪婪”地多给我们匹配字符,在这个例子里也就是匹配到最后一个“.”。
我们怎么解决这种问题呢?只要在“+”后面加一个“?”就好了。
import re
key = r"chuxiuhong@hit.edu.cn"
p1 = r"@.+?\."#我想匹配到@后面一直到“.”之间的,在这里是hit
pattern1 = re.compile(p1)
print pattern1.findall(key)
输出结果
['@hit.']
加了一个“?”我们就将贪婪的“+”改成了懒惰的“+”。这对于[abc]+,\w*之类的同样适用。
小测验:上面那个例子可以不使用懒惰匹配,想一种方法得到同样的结果
**个人建议:在你使用"+","*"的时候,一定先想好到底是用贪婪型还是懒惰型,尤其是当你用到范围较大的项目上时,因为很有可能它就多匹配字符回来给你!!!**
为了能够准确的控制重复次数,正则表达式还提供
{a,b}(代表a<=匹配次数<=b)
还是举个栗子,我们有sas,saas,saaas,我们想要sas和saas,我们怎么处理呢?
import re
key = r"saas and sas and saaas"
p1 = r"sa{1,2}s"
pattern1 = re.compile(p1)
print pattern1.findall(key)
输出
['saas', 'sas']
如果你省略掉{1,2}中的2,那么就代表至少匹配一次,那么就等价于?
如果你省略掉{1,2}中的1,那么就代表至多匹配2次。
下面列举一些正则表达式里的元字符及其作用
元字符 | 说明 |
---|---|
. | 代表任意字符 |
| | 逻辑或操作符 |
[ ] | 匹配内部的任一字符或子表达式 |
[^] | 对字符集和取非 |
- | 定义一个区间 |
\ | 对下一字符取非(通常是普通变特殊,特殊变普通) |
* | 匹配前面的字符或者子表达式0次或多次 |
*? | 惰性匹配上一个 |
+ | 匹配前一个字符或子表达式一次或多次 |
+? | 惰性匹配上一个 |
? | 匹配前一个字符或子表达式0次或1次重复 |
{n} | 匹配前一个字符或子表达式 |
{m,n} | 匹配前一个字符或子表达式至少m次至多n次 |
{n,} | 匹配前一个字符或者子表达式至少n次 |
{n,}? | 前一个的惰性匹配 |
^ | 匹配字符串的开头 |
\A | 匹配字符串开头 |
$ | 匹配字符串结束 |
[\b] | 退格字符 |
\c | 匹配一个控制字符 |
\d | 匹配任意数字 |
\D | 匹配数字以外的字符 |
\t | 匹配制表符 |
\w | 匹配任意数字字母下划线 |
\W | 不匹配数字字母下划线 |
中级篇介绍子表达式,向前向后查找,回溯引用 链接:http://www.cnblogs.com/chuxiuhong/p/5907484.html
Python 正则表达式入门(中级篇)
初级篇链接:http://www.cnblogs.com/chuxiuhong/p/5885073.html
上一篇我们说在这一篇里,我们会介绍子表达式,向前向后查找,回溯引用。到这一篇开始前除了回溯引用在一些场合不可替代以外,大部分情况下的正则表达式你应该都会写了。
1.子表达式
子表达式的概念特别好理解。其实它就是将几个字符的组合形式看做一个大的“字符”。不好理解?举个栗子:我们要匹配类似IP地址这种形式的字符(暂且不考虑数值范围的合理性,这个留作学完之后的思考题吧)。形如192.168.1.1这样的地址我们怎么写表达式呢?
答案一 \d+.?\d+.?\d+.?\d+
不好,一个是太繁琐,另一个是连位数都控制不了
答案二 \d+{1,3}.?\d+{1,3}.?\d+{1,3}.?\d+{1,3}
一般般,复杂但是起码能把位数控制在合理范围
答案三 (\d+{1,3}\.){3}\d+{1,3}\.
利用子表达式,将123.
这种数字加小数点看做一个整体字符,对其规定重复匹配的次数,既简洁,效果又好。所以只要你将几个字符组合用圆括号括起来,那么你就可以把一个圆括号内的内容当做一个字符,外面可以加我们之前讲过的所有元字符来控制匹配。
2.向前向后查找
现在,我们终于来到了向前向后查找这一块。为什么说终于来到这了呢?还记得我们在初级篇最开始的例子吗?
假如你在写一个爬虫,你得到了一个网页的HTML源码。其中有一段html
<html><body><h1>hello world</h1></body></html>
你想要把这个hello world提取出来
import re
key = r"<html><body><h1>hello world</h1></body></html>"#这段是你要匹配的文本
p1 = r"(?<=<h1>).+?(?=</h1>)"#这是我们写的正则表达式规则,你现在可以不理解啥意思
pattern1 = re.compile(p1)#我们在编译这段正则表达式
matcher1 = re.search(pattern1,key)#在源文本中搜索符合正则表达式的部分
print matcher1.group(0)#打印出来
这个正则表达式
p1 = r"(?<=<h1>).+?(?=<h1>)"
看到(?<=<h1>)
和 (?=<h1>)
了吗?第一个?<=表示在被匹配字符前必须得有<h1>
,后面的?=表示被匹配字符后必须有<h1>
简单来说,就是你要匹配的字符是XX,但必须满足形式是AXXB这样的字符串,那么你就可以这样写正则表达式
p = r"(?<=A)XX(?=B)"
匹配到的字符串就是XX。并且,向前查找向后查找不需要必须同时出现。如果你愿意,可以只写满足一个条件。
所以你也不需要记住哪个是向前查找,哪个是向后查找。只要记住?<=后面跟着的是前缀要求,?=后面跟的是后缀要求。
本质上来说,向前查找和向后查找其实是匹配整个字符串,即AXXB,但返回时仅仅返回一个XX。也就是说,如果你愿意,完全可以避开向前向后查找的方式,直接匹配带有前后缀的字符串,然后做字符串切片处理。
3.回溯引用
不同于前面的向前向后查找,这一条有时候你未必绕的过去。在有些情况下,你还必须得用到回溯引用,所以你如果想拥有在实际应用中使用正则表达式,回溯引用是你应该了解和掌握的。
我们还是从最开始的例子来说。
你原本要匹配<h1></h1>
之间的内容,现在你知道HTML有多级标题,你想把每一级的标题内容都提取出来。你也许会这样写:
p = r"<h[1-6]>.*?</h[1-6]>"
这样一来,你就可以将HTML页面内所有的标题内容全部匹配出来。即<h1></h1>
到<h6></h6>
的内容都可以被提取出来。但是我们之前说过,写正则表达式困难的不是匹配到想要的内容,而是尽可能的不匹配到不想要的内容。在这个例子中,很有可能你就会被下面这样的用例玩坏。
比方说
<h1>hello world</h3>
发现后面的</h3>
了吗?我们不管是怎么写出来这样的标题的,但实实在在的是我们的正则表达式同样会把这里面的hello world匹配出来。这时候就是回溯引用的重要作用。下面就是一个示例:
import re
key = r"<h1>hello world</h3>"
p1 = r"<h([1-6])>.*?</h\1>"
pattern1 = re.compile(p1)
m1 = re.search(pattern1,key)
print m1.group(0)#这里是会报错的,因为匹配不到,你如果将源字符串改成</h1>
结尾就能看出效果
看到\1
了吗?原本那个位置应该是[1-6]
,但是我们写的是\1,我们之前说过,转义符\
干的活就是把特殊的字符转成一般的字符,把一般的字符转成特殊字符。普普通通的数字1被转移成什么了呢?在这里1表示第一个子表达式,也就是说,它是动态的,是随着前面第一个子表达式的匹配到的东西而变化的。比方说前面的子表达式内是[1-6]
,在实际字符串中找到了1,那么后面的\1就是1,如果前面的子表达式在实际字符串中找到了2,那么后面的\1就是2。
类似的,\2,\3,....就代表第二个第三个子表达式。
所以回溯引用是正则表达式内的一个“动态”的正则表达式,让你根据实际的情况变化进行匹配。
中级篇就到这里,其实正则表达式还有很多细节还没有写出来,也有很多元字符我没有交代,但掌握了纲要,懂得原理之后剩下的就类似于查表构造这种活了。
建议看到这的朋友看看《正则表达式必知必会》,初级篇和这篇中有几个例子也是取材于此。