1019 数字黑洞

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:
输入给出一个 (0,10​4​​) 区间内的正整数 N。

输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:
6767

输出样例 1:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 2:
2222

输出样例 2:
2222 - 2222 = 0000

  题目分析:有一个测试用例注意点,如果当输入N值为6174的时候,依旧要进行下面的步骤,直到差值为6174才可以~所以用do while语句,无论是什么值总是要执行一遍while语句,直到遇到差值是0000或6174。s.insert(0, 4 – s.length(), ‘0’);用来给不足4位的时候前面补0.
#include<iostream>
#include<string>
#include<algorithm>

using namespace std;

bool cmp(char a,char b) {
	return a > b;
}

int main() {
	string s;
	cin >> s;
	s.insert(0, 4 - s.length(), '0');
	do {
		string a = s, b = s;
		sort(a.begin(), a.end(), cmp);
		sort(b.begin(), b.end());
		int result = stoi(a) - stoi(b);
		s = to_string(result);
		s.insert(0, 4 - s.length(), '0');
		cout << a << " - " << b << " = " << s << endl;
	} while (s != "6174" && s != "0000");
	system("pause");
	return 0;
}
posted @ 2020-05-10 22:52  Frances_FKYM  阅读(306)  评论(0编辑  收藏  举报