该文被密码保护。 阅读全文
该文被密码保护。 阅读全文
摘要:
P4187 [USACO18JAN]Stamp Painting G 考虑在某次操作后一定会留下一段长为 $k$ 的同色段。同时可以通过对 $[1,k],[2,k+1],\cdots,[k-n+1,n],[k-n,n-1],\cdots,[p,p+k-1]$ 先后进行操作以控制这段同色段的位置,同时 阅读全文
摘要:
中国剩余定理 对于下面的方程组(其中 $n_1,n_2,\cdots,n_m$ 两两互质): $$\begin{cases}x\equiv a_1\pmod {n_1}\x\equiv a_2\pmod {n_2}\\cdots\x\equiv a_m\pmod{n_m}\end{cases}$$ 阅读全文
该文被密码保护。 阅读全文
摘要:
AT_arc153_d Sum of Sum of Digits 考虑从低位到高位确定好 $x$ 的每一位。设第 $i$ 位之后部分对 $\sum f$ 的贡献已经定好,则在确认第 $i$ 位及之前的数位时,只需要考虑这一位对 $\sum f$ 的贡献,这一位的和只和之前多少个数进位到该位(显然将所 阅读全文
该文被密码保护。 阅读全文
摘要:
普通生成函数 在对一个序列 $f$ 进行计算时,考虑构造多项式 $F(x)=\sum_i f_ix^i$,然后在这个多项式上面进行化简/运算,方便对 $f$ 的计算;多项式 $F(x)=\sum_i f_ix^i$ 称为 $f$ 的 普通生成函数。(令 $F(x)=\sum_i f_ix^i,G(x 阅读全文
该文被密码保护。 阅读全文
摘要:
十一、矩阵的利用(行列を用いたテクニック) 1. 快速幂(二分累乗) (1) 推导转移矩阵(行列の導出) 例题:Placing Squares 题解 (2) BM 优化递推(?)(コンパニオン行列の累乗) (3) 多项式快速幂(多項式の累乗) 将转移矩阵看成乘上一个多项式的形式,则转移的合并可以从 阅读全文