摘自 8 月 13 号的讲课内容。
一、直接方式(Direct Methods)
计算 r ∑ i = l a i ∑ i = l r a i 时,可以通过下标变换的思路将其转为 r − k ∑ i = l − k a i + k ∑ i = l − k r − k a i + k ,例如 r − l ∑ i = 0 a l + i ∑ i = 0 r − l a l + i 或 r − l ∑ i = 0 a r − i ∑ i = 0 r − l a r − i 。
例1:计算 n ∑ k = 0 a × k ∑ k = 0 n a × k
解:记 S = n ∑ k = 0 a × k S = ∑ k = 0 n a × k 。由于 n ∑ k = 0 a × k = n ∑ k = 0 a × ( n − k ) ∑ k = 0 n a × k = ∑ k = 0 n a × ( n − k ) ,故 2 S = n ∑ k = 0 a × n 2 S = ∑ k = 0 n a × n ,S = 1 2 n ( n + 1 ) a S = 1 2 n ( n + 1 ) a 。
例2:计算 ∑ 1 ≤ i ≤ j ≤ n a i a j ∑ 1 ≤ i ≤ j ≤ n a i a j
解:记 S = ∑ 1 ≤ i ≤ j ≤ n a i a j S = ∑ 1 ≤ i ≤ j ≤ n a i a j ,则 2 S = ∑ 1 ≤ i , j ≤ n a i a j + n ∑ i = 1 a 2 i = ( n ∑ i = 1 a i ) 2 + n ∑ i = 1 a 2 i 2 S = ∑ 1 ≤ i , j ≤ n a i a j + ∑ i = 1 n a i 2 = ( ∑ i = 1 n a i ) 2 + ∑ i = 1 n a i 2 ,S = 1 2 ( ( n ∑ i = 1 a i ) 2 + n ∑ i = 1 a 2 i ) S = 1 2 ( ( ∑ i = 1 n a i ) 2 + ∑ i = 1 n a i 2 ) 。
2. 归纳法(Induction)
例3:计算 n ∑ k = 1 ( 2 k − 1 ) ∑ k = 1 n ( 2 k − 1 )
解:猜想 n ∑ k = 1 ( 2 k − 1 ) = n 2 ∑ k = 1 n ( 2 k − 1 ) = n 2 。此时 n + 1 ∑ k = 1 ( 2 k − 1 ) = n 2 + ( 2 n + 1 ) = ( n + 1 ) 2 ∑ k = 1 n + 1 ( 2 k − 1 ) = n 2 + ( 2 n + 1 ) = ( n + 1 ) 2 ,符合猜想;而 1 ∑ k = 1 ( 2 k − 1 ) = 1 = 1 2 ∑ k = 1 1 ( 2 k − 1 ) = 1 = 1 2 。因此 n ∑ k = 1 ( 2 k − 1 ) = n 2 ∑ k = 1 n ( 2 k − 1 ) = n 2 。
例4:求证 ∀ n , i , a i ≥ 0 ∀ n , i , a i ≥ 0 时有 n ∏ i = 1 a i ≤ ( 1 n n ∑ i = 1 a i ) n ∏ i = 1 n a i ≤ ( 1 n ∑ i = 1 n a i ) n
解:令 P ( n ) = [ n ∏ i = 1 a i ≤ ( 1 n n ∑ i = 1 a i ) n ] P ( n ) = [ ∏ i = 1 n a i ≤ ( 1 n ∑ i = 1 n a i ) n ] 。首先 P ( 1 ) P ( 1 ) 显然成立(a 1 ≤ a 1 a 1 ≤ a 1 ),同时由于 ( 1 2 ( a 1 + a 2 ) ) 2 = 1 4 ( a 1 + a 2 ) 2 ( 1 2 ( a 1 + a 2 ) ) 2 = 1 4 ( a 1 + a 2 ) 2 ,所以 ( 1 2 ( a 1 + a 2 ) ) 2 − a 1 a 2 = 1 4 ( a 1 − a 2 ) 2 ≥ 0 ( 1 2 ( a 1 + a 2 ) ) 2 − a 1 a 2 = 1 4 ( a 1 − a 2 ) 2 ≥ 0 ,P ( 2 ) P ( 2 ) 成立。
P ( n ) P ( n ) 成立时,考虑 a n = 1 n − 1 n − 1 ∑ i = 1 a i a n = 1 n − 1 ∑ i = 1 n − 1 a i 的情况。此时 1 n n ∑ i = 1 a i = 1 n − 1 n − 1 ∑ i = 1 a i = a n 1 n ∑ i = 1 n a i = 1 n − 1 ∑ i = 1 n − 1 a i = a n ,则 P ( n ) P ( n ) 成立时有 a n × n − 1 ∏ i = 1 a i ≤ a n n a n × ∏ i = 1 n − 1 a i ≤ a n n ,故 n − 1 ∏ i = 1 a i ≤ ( 1 n − 1 n − 1 ∑ i = 1 a i ) n − 1 ∏ i = 1 n − 1 a i ≤ ( 1 n − 1 ∑ i = 1 n − 1 a i ) n − 1 ,P ( n − 1 ) P ( n − 1 ) 成立。
然后考虑 P ( n ) P ( n ) 成立时 P ( 2 n ) P ( 2 n ) 的情况。此时 n ∏ i = 1 a i ≤ ( 1 n n ∑ i = 1 a i ) n ∏ i = 1 n a i ≤ ( 1 n ∑ i = 1 n a i ) n ,2 n ∏ i = n + 1 a i ≤ ( 1 n 2 n ∑ i = n + 1 a i ) n ∏ i = n + 1 2 n a i ≤ ( 1 n ∑ i = n + 1 2 n a i ) n ;所以 2 n ∏ i = 1 a i ≤ ( ( 1 n n ∑ i = 1 a i ) ( 1 n 2 n ∑ i = n + 1 a i ) ) n ∏ i = 1 2 n a i ≤ ( ( 1 n ∑ i = 1 n a i ) ( 1 n ∑ i = n + 1 2 n a i ) ) n 。而由 P ( 2 ) P ( 2 ) 得 ( 1 n n ∑ i = 1 a i ) ( 1 n 2 n ∑ i = n + 1 a i ) ≤ ( 1 2 n 2 n ∑ i = 1 a i ) 2 ( 1 n ∑ i = 1 n a i ) ( 1 n ∑ i = n + 1 2 n a i ) ≤ ( 1 2 n ∑ i = 1 2 n a i ) 2 ,所以 2 n ∏ i = 1 a i ≤ ( ( 1 n n ∑ i = 1 a i ) ( 1 n 2 n ∑ i = n + 1 a i ) ) n ≤ ( 1 2 n 2 n ∑ i = 1 a i ) 2 n ∏ i = 1 2 n a i ≤ ( ( 1 n ∑ i = 1 n a i ) ( 1 n ∑ i = n + 1 2 n a i ) ) n ≤ ( 1 2 n ∑ i = 1 2 n a i ) 2 n 。
综上,如果 P ( i ) P ( i ) 成立则 P ( i − 1 ) P ( i − 1 ) 成立(进而 ∀ j < i , P ( j ) ∀ j < i , P ( j ) 成立),并且 P ( 2 i ) P ( 2 i ) 成立(进而 ∀ j , P ( 2 j i ) ∀ j , P ( 2 j i ) 成立),所以 ∀ n ∀ n ,可以从 P ( 1 ) P ( 1 ) 成立推导到 P ( 2 ⌈ log 2 n ⌉ ) P ( 2 ⌈ log 2 n ⌉ ) 成立,进而 P ( n ) P ( n ) 成立。
3. 错位相减(Isolating)
此时可以把和式的最前面的项和最后面的项拿出来,消掉其他的项。
例5:求 n ∑ k = 0 a k ∑ k = 0 n a k
解:记 S = n ∑ k = 0 a k S = ∑ k = 0 n a k ,则 a S = n + 1 ∑ k = 1 a k a S = ∑ k = 1 n + 1 a k ,从而 ( a − 1 ) S = ( a n + 1 + n ∑ k = 1 a k ) − ( 1 + n ∑ k = 1 a k ) = a n + 1 − 1 ( a − 1 ) S = ( a n + 1 + ∑ k = 1 n a k ) − ( 1 + ∑ k = 1 n a k ) = a n + 1 − 1 ,S = a n + 1 − 1 a − 1 S = a n + 1 − 1 a − 1 。
例6:求 n ∑ k = 0 2 k k ∑ k = 0 n 2 k k
解:记 S = n ∑ k = 0 2 k k S = ∑ k = 0 n 2 k k ,则 2 S = n ∑ k = 0 2 k + 1 k 2 S = ∑ k = 0 n 2 k + 1 k ,2 S + n + 1 ∑ k = 1 2 k = n + 1 ∑ k = 1 2 k k 2 S + ∑ k = 1 n + 1 2 k = ∑ k = 1 n + 1 2 k k ,故 S = 2 n + 1 ( n + 1 ) − n + 1 ∑ k = 1 2 k = 2 n + 1 ( n + 1 ) − 2 n + 2 + 2 = 2 n + 1 ( n − 1 ) + 2 S = 2 n + 1 ( n + 1 ) − ∑ k = 1 n + 1 2 k = 2 n + 1 ( n + 1 ) − 2 n + 2 + 2 = 2 n + 1 ( n − 1 ) + 2 。
4. 求和因子(?)(Summation Factor)
用于解决形如 a n T n = b n T n − 1 + c n ( n > 0 ) a n T n = b n T n − 1 + c n ( n > 0 ) 的“变系数线性递推”的内容。
考虑构造等差数列以求 a n a n 。设 S n = d n a n T n = d n ( b n T n − 1 + c n ) = d n b n T n − 1 + d n c n S n = d n a n T n = d n ( b n T n − 1 + c n ) = d n b n T n − 1 + d n c n 。此时我们需要 d n b n T n − 1 = S n − 1 d n b n T n − 1 = S n − 1 ,则 d n b n = d n − 1 a n − 1 d n b n = d n − 1 a n − 1 ,然后 d n = d n − 1 a n − 1 b n = d n − 2 a n − 1 a n − 2 b n b n − 1 = ⋯ = n − 1 ∏ i = 1 a i n ∏ i = 1 b i d n = d n − 1 a n − 1 b n = d n − 2 a n − 1 a n − 2 b n b n − 1 = ⋯ = ∏ i = 1 n − 1 a i ∏ i = 1 n b i (这里设 S 0 = T 0 , d 0 = a 0 = 1 S 0 = T 0 , d 0 = a 0 = 1 )。此时 T n = S n d n a n = 1 d n a n ( T 0 + n ∑ i = 1 d i c i ) T n = S n d n a n = 1 d n a n ( T 0 + ∑ i = 1 n d i c i ) 。
例7:错排问题(已知 D 1 = 0 , D 2 = 1 D 1 = 0 , D 2 = 1 ,求 D n = ( n − 1 ) ( D n − 1 + D n − 2 ) D n = ( n − 1 ) ( D n − 1 + D n − 2 ) )
解:考虑把 D n D n 和 D n − 1 D n − 1 绑定起来,则 D n − n D n − 1 = − D n − 1 + ( n − 1 ) D n − 2 = − ( D n − 1 − ( n − 1 ) D n − 2 ) D n − n D n − 1 = − D n − 1 + ( n − 1 ) D n − 2 = − ( D n − 1 − ( n − 1 ) D n − 2 ) 。设 S n = D n − n D n − 1 S n = D n − n D n − 1 ,则 S 2 = 1 S 2 = 1 ,S n = ( − 1 ) n S n = ( − 1 ) n 。所以 D n = n D n − 1 + ( − 1 ) n D n = n D n − 1 + ( − 1 ) n ,按照上述的推导过程,令 D 0 = D 1 − ( − 1 ) 1 = 1 D 0 = D 1 − ( − 1 ) 1 = 1 ;则上述的 d n = 1 n ! d n = 1 n ! ,进而 D n = n ! ( 1 + n ∑ i = 1 ( − 1 ) i i ! ) = n ! ( n ∑ i = 0 ( − 1 ) i i ! ) D n = n ! ( 1 + ∑ i = 1 n ( − 1 ) i i ! ) = n ! ( ∑ i = 0 n ( − 1 ) i i ! ) 。
二、有限微积分(The Calculus of Finite Differences)
某些时候形如 b ∑ i = a f i ∑ i = a b f i 的形式容易使人联想到 ∫ b a f ( x ) d x ∫ a b f ( x ) d x ,这启发我们在序列上寻找微积分的一些性质。类似函数中的微分算子 D f ( x ) = D ( x + Δ x ) − D ( x ) Δ x D f ( x ) = D ( x + Δ x ) − D ( x ) Δ x ,我们可以在序列 f f 上定义其他一些算子。定义移位算子 E : f x → f x + 1 E : f x → f x + 1 ,差分算子 Δ Δ 为 E − I E − I (其中 I I 为恒等算子,∀ f , I : f x → f x ∀ f , I : f x → f x )(Δ f x → f x + 1 − f x Δ f x → f x + 1 − f x )。同理可定义 E i : f x → f x + i E i : f x → f x + i ,∇ = I − E − 1 ∇ = I − E − 1 (∇ : f x → f x − f x − 1 ∇ : f x → f x − f x − 1 ),Δ i = ( E − I ) i = i ∑ j = 0 ( − 1 ) i − j E j ( i j ) Δ i = ( E − I ) i = ∑ j = 0 i ( − 1 ) i − j E j ( i j ) (i i 阶差分)(Δ i : f x → i ∑ j = 0 ( − 1 ) i − j f x + j ( i j ) Δ i : f x → ∑ j = 0 i ( − 1 ) i − j f x + j ( i j ) )。
设序列 g g 为序列 f f 的差分序列(g x = Δ f x g x = Δ f x ),则 ∑ i ≤ n g i = f n , b ∑ i = a g i = f b + 1 − f a ∑ i ≤ n g i = f n , ∑ i = a b g i = f b + 1 − f a 。
例8:求 ∑ x n – – ∑ x n _
对于序列 x n – – x n _ ,有 ( x + 1 ) n – – − x n – – = n − 1 ∏ i = 0 ( x + 1 − i ) − n − 1 ∏ i = 0 ( x − i ) = ( n − 2 ∏ i = 0 ( x − i ) ) ( ( x + 1 ) − ( x − n + 1 ) ) = n n − 2 ∏ i = 0 ( x − i ) = n x n − 1 – ––– – ( x + 1 ) n _ − x n _ = ∏ i = 0 n − 1 ( x + 1 − i ) − ∏ i = 0 n − 1 ( x − i ) = ( ∏ i = 0 n − 2 ( x − i ) ) ( ( x + 1 ) − ( x − n + 1 ) ) = n ∏ i = 0 n − 2 ( x − i ) = n x n − 1 _ 。这个形式和 ( x n ) ′ = n x n − 1 ( x n ) ′ = n x n − 1 很类似。(而 Δ 2 x = 2 x Δ 2 x = 2 x 和 ( e x ) ′ = e x ( e x ) ′ = e x 又很相似)同理可证 ∇ x ¯ ¯ ¯ n = n x ¯ ¯¯¯¯¯¯¯¯ ¯ n − 1 ∇ x n ¯ = n x n − 1 ¯ 。考虑 x n – – x n _ 在 n < 0 n < 0 时的意义。由于 x n – – x n − 1 – ––– – = x − n + 1 , x 0 – = 1 x n _ x n − 1 _ = x − n + 1 , x 0 _ = 1 ,故 x − n – –– – = 1 n ∏ i = 1 ( x + i ) x − n _ = 1 ∏ i = 1 n ( x + i ) 。此时 n < 0 n < 0 时,Δ x n – – = ( x + 1 ) n – – − x n – – = 1 − n ∏ i = 1 ( x + 1 + i ) − 1 − n ∏ i = 1 ( x + i ) = 1 − n + 1 ∏ i = 2 ( x + i ) − 1 − n ∏ i = 1 ( x + i ) = x + 1 − n + 1 ∏ i = 1 ( x + i ) − x + 1 − n − n + 1 ∏ i = 1 ( x + i ) = n 1 − n + 1 ∏ i = 1 ( x − i ) = n x n − 1 – ––– – Δ x n _ = ( x + 1 ) n _ − x n _ = 1 ∏ i = 1 − n ( x + 1 + i ) − 1 ∏ i = 1 − n ( x + i ) = 1 ∏ i = 2 − n + 1 ( x + i ) − 1 ∏ i = 1 − n ( x + i ) = x + 1 ∏ i = 1 − n + 1 ( x + i ) − x + 1 − n ∏ i = 1 − n + 1 ( x + i ) = n 1 ∏ i = 1 − n + 1 ( x − i ) = n x n − 1 _ ,仍然满足 n > 0 n > 0 时 Δ x n – – Δ x n _ 的式子。同理 ∀ n ∈ Z , ∇ x ¯ ¯ ¯ n = n ( x + 1 ) ¯ ¯¯¯¯¯¯¯¯ ¯ n − 1 ∀ n ∈ Z , ∇ x n ¯ = n ( x + 1 ) n − 1 ¯ 。
然后考虑求和。由 Δ x n = n x n − 1 Δ x n = n x n − 1 可得 ∫ x n = 1 n + 1 x n + 1 ∫ x n = 1 n + 1 x n + 1 ;按照类似的思路可得 ∑ x n – – = 1 n + 1 ( x + 1 ) n + 1 – ––– – ∑ x n _ = 1 n + 1 ( x + 1 ) n + 1 _ 。
例9:求 n ∑ k = 0 k 2 ∑ k = 0 n k 2
解:考虑 k 2 = k ( k − 1 ) + k k 2 = k ( k − 1 ) + k ,则 n ∑ k = 0 k 2 = ( n ∑ k = 0 k 2 – ) + ( n ∑ k = 0 k 1 – ) = 1 3 ( n + 1 ) 3 – + 1 2 ( n + 1 ) 2 – = 1 3 ( n + 1 ) n ( n − 1 ) + 1 2 ( n + 1 ) n = 1 6 n ( n + 1 ) ( 2 ( n − 1 ) + 3 ) = 1 6 n ( n + 1 ) ( 2 n + 1 ) ∑ k = 0 n k 2 = ( ∑ k = 0 n k 2 _ ) + ( ∑ k = 0 n k 1 _ ) = 1 3 ( n + 1 ) 3 _ + 1 2 ( n + 1 ) 2 _ = 1 3 ( n + 1 ) n ( n − 1 ) + 1 2 ( n + 1 ) n = 1 6 n ( n + 1 ) ( 2 ( n − 1 ) + 3 ) = 1 6 n ( n + 1 ) ( 2 n + 1 ) 。
同理,由于 k z = z ∑ i = 0 S ( z , i ) k i – k z = ∑ i = 0 z S ( z , i ) k i _ (其中 S ( z , i ) S ( z , i ) 为 第二类斯特林数 ,表示将 n n 个两两不同的元素,划分为 k k 个互不区分的非空子集的方案数。考虑组合意义,k i – = i ! ( k i ) k i _ = i ! ( k i ) ,则 k z k z 为将 k k 个两两不同的元素划分至 z z 个两两不同的可以为空的子集内的方案数,S ( z , i ) i ! ( k i ) S ( z , i ) i ! ( k i ) 即为选择 i i 个非空子集,将 k k 个元素放入 i i 个子集中,子集两两区分的方案数),n ∑ k = 0 ( z ∑ i = 0 a i k i ) ∑ k = 0 n ( ∑ i = 0 z a i k i ) 也可以拆成 n ∑ k = 0 ( z ∑ i = 0 ( a i ( i ∑ j = 0 S ( i , j ) k j – ) ) ) ∑ k = 0 n ( ∑ i = 0 z ( a i ( ∑ j = 0 i S ( i , j ) k j _ ) ) ) 进行计算。
1. 分部求和(Summation by Parts)
分部求和的名字来源于分部积分。
差分算子 Δ Δ 满足 Δ k f x = k Δ f x Δ k f x = k Δ f x ,Δ ( f x + g x ) = ( Δ f x ) + ( Δ g x ) Δ ( f x + g x ) = ( Δ f x ) + ( Δ g x ) 。考虑乘法的时候 Δ ( f x g x ) = f x + 1 g x + 1 − f x g x = f x + 1 g x + 1 − f x g x + 1 + f x g x + 1 − f x g x = g x + 1 ( f x + 1 − f x ) + f x ( g x + 1 − g x ) Δ ( f x g x ) = f x + 1 g x + 1 − f x g x = f x + 1 g x + 1 − f x g x + 1 + f x g x + 1 − f x g x = g x + 1 ( f x + 1 − f x ) + f x ( g x + 1 − g x ) ,故 Δ ( f g ) = E g Δ f + f Δ g Δ ( f g ) = E g Δ f + f Δ g ,进而有 f Δ g = Δ ( f g ) − E g Δ f , ∑ f Δ g = f g − ∑ E g Δ f f Δ g = Δ ( f g ) − E g Δ f , ∑ f Δ g = f g − ∑ E g Δ f 。
例10:求 n ∑ k = 0 k 2 k ∑ k = 0 n k 2 k
解:考虑 Δ 2 x = 2 x Δ 2 x = 2 x ,所以 x 2 x x 2 x 可以看成 x Δ 2 x x Δ 2 x ,然后求和即为 ( n + 1 ) 2 n + 1 − n ∑ k = 0 2 k + 1 = ( n + 1 ) 2 n + 1 − 2 n + 2 + 2 = ( n − 1 ) 2 n + 1 + 2 ( n + 1 ) 2 n + 1 − ∑ k = 0 n 2 k + 1 = ( n + 1 ) 2 n + 1 − 2 n + 2 + 2 = ( n − 1 ) 2 n + 1 + 2 。
例11:求 n ∑ k = 1 H k ∑ k = 1 n H k (其中 H x H x 为调和级数,也就是 x ∑ i = 1 1 i ∑ i = 1 x 1 i )
解:设 g x = x g x = x ,f x = H x f x = H x ,则
n ∑ k = 1 H k = n ∑ k = 1 f k Δ g k = ( f n + 1 g n + 1 − f 1 g 1 ) − n ∑ k = 1 g k + 1 ( f k + 1 − f k ) = ( n + 1 ) H n + 1 − 1 − n ∑ k = 1 ( k + 1 ) 1 k + 1 = ( n + 1 ) ( H n + 1 − 1 ) ∑ k = 1 n H k = ∑ k = 1 n f k Δ g k = ( f n + 1 g n + 1 − f 1 g 1 ) − ∑ k = 1 n g k + 1 ( f k + 1 − f k ) = ( n + 1 ) H n + 1 − 1 − ∑ k = 1 n ( k + 1 ) 1 k + 1 = ( n + 1 ) ( H n + 1 − 1 )
例12:求 n ∑ k = 1 ( k m ) H k ∑ k = 1 n ( k m ) H k ,其中 m m 为常数
解:设 Δ g x = ( x m ) Δ g x = ( x m ) ,f x = H x f x = H x ,考虑 ( x + 1 m + 1 ) − ( x m + 1 ) = ( x m ) ( x + 1 m + 1 ) − ( x m + 1 ) = ( x m ) ,则 g x = ( x m + 1 ) g x = ( x m + 1 ) 。代入上式得:
n ∑ k = 1 ( k m ) H k = n ∑ k = 1 f k Δ g k = ( f n + 1 g n + 1 − f 1 g 1 ) − n ∑ k = 1 g k + 1 ( f k + 1 − f k ) = ( n + 1 m + 1 ) H n + 1 − ( 1 m + 1 ) − n ∑ k = 1 ( k + 1 m + 1 ) 1 k + 1 = ( n + 1 m + 1 ) H n + 1 − ( 1 m + 1 ) − 1 m + 1 n ∑ k = 1 ( k m ) = ( n + 1 m + 1 ) H n + 1 − ( 1 m + 1 ) − 1 m + 1 ( n + 1 m + 1 ) + 1 m + 1 ( 1 m + 1 ) ∑ k = 1 n ( k m ) H k = ∑ k = 1 n f k Δ g k = ( f n + 1 g n + 1 − f 1 g 1 ) − ∑ k = 1 n g k + 1 ( f k + 1 − f k ) = ( n + 1 m + 1 ) H n + 1 − ( 1 m + 1 ) − ∑ k = 1 n ( k + 1 m + 1 ) 1 k + 1 = ( n + 1 m + 1 ) H n + 1 − ( 1 m + 1 ) − 1 m + 1 ∑ k = 1 n ( k m ) = ( n + 1 m + 1 ) H n + 1 − ( 1 m + 1 ) − 1 m + 1 ( n + 1 m + 1 ) + 1 m + 1 ( 1 m + 1 )
考虑 ( 1 m + 1 ) ( 1 m + 1 ) 和 1 m + 1 ( 1 m + 1 ) 1 m + 1 ( 1 m + 1 ) 这两项。如果 m = 0 m = 0 则两项均为 1 1 ,否则两项均为 0 0 。所以上式还可以化简为 ( n + 1 m + 1 ) ( H n + 1 − 1 m + 1 ) ( n + 1 m + 1 ) ( H n + 1 − 1 m + 1 ) 。
2. 牛顿级数(Newton Representation)
引入:泰勒展开
考虑使用某个多项式逐步逼近某个函数的过程。设该多项式为 f ( x ) = n ∑ i = 0 a i x i f ( x ) = ∑ i = 0 n a i x i ,则 D f ( x ) = n − 1 ∑ i = 0 a i + 1 ( i + 1 ) x i D f ( x ) = ∑ i = 0 n − 1 a i + 1 ( i + 1 ) x i 。此时可以使用在该函数上某个点的若干阶导数以逼近该函数。
例如取 x = 0 x = 0 时的无穷阶导数时,f ( 0 ) = n ∑ i = 0 a i 0 i = a 0 = 0 ! a 0 f ( 0 ) = ∑ i = 0 n a i 0 i = a 0 = 0 ! a 0 ,D f ( 0 ) = n ∑ i = 1 a i i 1 – 0 i − 1 = 1 ! a 1 D f ( 0 ) = ∑ i = 1 n a i i 1 _ 0 i − 1 = 1 ! a 1 ,D 2 f ( 0 ) = n ∑ i = 2 a i i 2 – 0 i − 2 = 2 ! a 2 D 2 f ( 0 ) = ∑ i = 2 n a i i 2 _ 0 i − 2 = 2 ! a 2 ,依次类推可得 D k f ( 0 ) = k ! a k D k f ( 0 ) = k ! a k ,反推得该多项式为 ∑ i = 0 D i f ( 0 ) i ! x i ∑ i = 0 D i f ( 0 ) i ! x i 。
使用下降幂时,x i – − ( x − 1 ) i – x i _ − ( x − 1 ) i _ 比使用普通幂时 x i − ( x − 1 ) i x i − ( x − 1 ) i 更方便表示。考虑使用形如 f ( x ) = ∑ i = 0 b i x i – f ( x ) = ∑ i = 0 b i x i _ 的形式以代替上述的 ∑ i = 0 a i x i ∑ i = 0 a i x i 。显然我们可以从高到低唯一地确定 b b 的每一项。先考虑 Δ k x n – – = Δ k − 1 n x n − 1 – ––– – = Δ k − 2 n ( n − 1 ) x n − 2 – ––– – = ⋯ = n k – – x n − k – ––– – Δ k x n _ = Δ k − 1 n x n − 1 _ = Δ k − 2 n ( n − 1 ) x n − 2 _ = ⋯ = n k _ x n − k _ ,进而 Δ k x k – – = k ! Δ k x k _ = k ! 。此时 Δ k f ( 0 ) = ∑ i = k b i i k – – 0 i − k – –– – = b i i ! Δ k f ( 0 ) = ∑ i = k b i i k _ 0 i − k _ = b i i ! 。进而对于某个 f f ,我们可以使用形如 ∑ i = 0 Δ i f ( 0 ) i ! x i – ∑ i = 0 Δ i f ( 0 ) i ! x i _ 以逼近 f ( x ) f ( x ) ,称为多项式的牛顿级数。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通