求和相关知识整理

摘自 8 月 13 号的讲课内容。

一、直接方式(Direct Methods)

1. 下标变换(Index Transformation)

计算 \(\sum\limits_{i=l}^r a_i\) 时,可以通过下标变换的思路将其转为 \(\sum\limits_{i=l-k}^{r-k}a_{i+k}\),例如 \(\sum\limits_{i=0}^{r-l} a_{l+i}\)\(\sum\limits_{i=0}^{r-l} a_{r-i}\)

例1:计算 \(\sum\limits_{k=0}^n a\times k\)

解:记 \(S=\sum\limits_{k=0}^n a\times k\)。由于 \(\sum\limits_{k=0}^n a\times k=\sum\limits_{k=0}^n a\times \left(n-k\right)\),故 \(2S=\sum\limits_{k=0}^n a\times n\)\(S=\frac12n\left(n+1\right)a\)

例2:计算 \(\sum\limits_{1\le i\le j\le n}a_ia_j\)

解:记 \(S=\sum\limits_{1\le i\le j\le n}a_ia_j\),则 \(2S=\sum\limits_{1\le i,j\le n}a_ia_j+\sum\limits_{i=1}^n a_i^2=\left(\sum\limits_{i=1}^n a_i\right)^2+\sum\limits_{i=1}^n a_i^2\)\(S=\frac 12\left(\left(\sum\limits_{i=1}^n a_i\right)^2+\sum\limits_{i=1}^n a_i^2\right)\)

2. 归纳法(Induction)

例3:计算 \(\sum\limits_{k=1}^n \left(2k-1\right)\)

解:猜想 \(\sum\limits_{k=1}^n \left(2k-1\right)=n^2\)。此时 \(\sum\limits_{k=1}^{n+1}\left(2k-1\right)=n^2+\left(2n+1\right)=\left(n+1\right)^2\),符合猜想;而 \(\sum\limits_{k=1}^1 \left(2k-1\right)=1=1^2\)。因此 \(\sum\limits_{k=1}^n \left(2k-1\right)=n^2\)

例4:求证 \(\forall n,i,a_i\ge 0\) 时有 \(\prod\limits_{i=1}^n a_i\le\left(\frac 1n\sum\limits_{i=1}^n a_i\right)^n\)

解:令 \(P\left(n\right)=\left[\prod\limits_{i=1}^n a_i\le\left(\frac 1n\sum\limits_{i=1}^n a_i\right)^n\right]\)。首先 \(P\left(1\right)\) 显然成立(\(a_1\le a_1\)),同时由于 \(\left(\frac 12\left(a_1+a_2\right)\right)^2=\frac 14\left(a_1+a_2\right)^2\),所以 \(\left(\frac 12\left(a_1+a_2\right)\right)^2-a_1a_2=\frac 14\left(a_1-a_2\right)^2\ge 0\)\(P\left(2\right)\) 成立。

\(P\left(n\right)\) 成立时,考虑 \(a_n=\frac 1{n-1}\sum\limits_{i=1}^{n-1}a_i\) 的情况。此时 \(\frac1n\sum\limits_{i=1}^n a_i=\frac 1{n-1}\sum\limits_{i=1}^{n-1}a_i=a_n\),则 \(P\left(n\right)\) 成立时有 \(a_n\times\prod\limits_{i=1}^{n-1}a_i\le a_n^n\),故 \(\prod\limits_{i=1}^{n-1}a_i\le\left(\frac 1{n-1}\sum\limits_{i=1}^{n-1} a_i\right)^{n-1}\)\(P\left(n-1\right)\) 成立。

然后考虑 \(P\left(n\right)\) 成立时 \(P\left(2n\right)\) 的情况。此时 \(\prod\limits_{i=1}^n a_i\le\left(\frac 1n\sum\limits_{i=1}^n a_i\right)^n\)\(\prod\limits_{i=n+1}^{2n} a_i\le\left(\frac 1n\sum\limits_{i=n+1}^{2n} a_i\right)^n\);所以 \(\prod\limits_{i=1}^{2n} a_i\le \left(\left(\frac 1n\sum\limits_{i=1}^n a_i\right)\left(\frac 1n\sum\limits_{i=n+1}^{2n}a_i\right)\right)^n\)。而由 \(P\left(2\right)\)\(\left(\frac 1n\sum\limits_{i=1}^n a_i\right)\left(\frac 1n\sum\limits_{i=n+1}^{2n}a_i\right)\le \left(\frac 1{2n}\sum\limits_{i=1}^{2n}a_i\right)^2\),所以 \(\prod\limits_{i=1}^{2n} a_i\le \left(\left(\frac 1n\sum\limits_{i=1}^n a_i\right)\left(\frac 1n\sum\limits_{i=n+1}^{2n}a_i\right)\right)^n\le \left(\frac 1{2n}\sum\limits_{i=1}^{2n}a_i\right)^{2n}\)

综上,如果 \(P\left(i\right)\) 成立则 \(P\left(i-1\right)\) 成立(进而 \(\forall j<i,P\left(j\right)\) 成立),并且 \(P\left(2i\right)\) 成立(进而 \(\forall j,P\left(2^ji\right)\) 成立),所以 \(\forall n\),可以从 \(P\left(1\right)\) 成立推导到 \(P\left(2^{\left\lceil\log_2 n\right\rceil}\right)\) 成立,进而 \(P\left(n\right)\) 成立。

3. 错位相减(Isolating)

此时可以把和式的最前面的项和最后面的项拿出来,消掉其他的项。

例5:求 \(\sum\limits_{k=0}^n a^k\)

解:记 \(S=\sum\limits_{k=0}^n a^k\),则 \(aS=\sum\limits_{k=1}^{n+1} a^k\),从而 \(\left(a-1\right)S=\left(a^{n+1}+\sum\limits_{k=1}^n a^k\right)-\left(1+\sum\limits_{k=1}^n a^k\right)=a^{n+1}-1\)\(S=\frac{a^{n+1}-1}{a-1}\)

例6:求 \(\sum\limits_{k=0}^n 2^kk\)

解:记 \(S=\sum\limits_{k=0}^n 2^kk\),则 \(2S=\sum\limits_{k=0}^n 2^{k+1}k\)\(2S+\sum\limits_{k=1}^{n+1} 2^k=\sum\limits_{k=1}^{n+1} 2^kk\),故 \(S=2^{n+1}\left(n+1\right)-\sum\limits_{k=1}^{n+1}2^k=2^{n+1}\left(n+1\right)-2^{n+2}+2=2^{n+1}\left(n-1\right)+2\)

4. 求和因子(?)(Summation Factor)

用于解决形如 \(a_nT_n=b_nT_{n-1}+c_n\left(n>0\right)\) 的“变系数线性递推”的内容。

考虑构造等差数列以求 \(a_n\)。设 \(S_n=d_na_nT_n=d_n\left(b_nT_{n-1}+c_n\right)=d_nb_nT_{n-1}+d_nc_n\)。此时我们需要 \(d_nb_nT_{n-1}=S_{n-1}\),则 \(d_nb_n=d_{n-1}a_{n-1}\),然后 \(d_n=d_{n-1}\frac{a_{n-1}}{b_n}=d_{n-2}\frac{a_{n-1}a_{n-2}}{b_nb_{n-1}}=\cdots=\frac{\prod\limits_{i=1}^{n-1}a_i}{\prod\limits_{i=1}^n b_i}\)(这里设 \(S_0=T_0,d_0=a_0=1\))。此时 \(T_n=\frac{S_n}{d_na_n}=\frac 1{d_na_n}\left(T_0+\sum\limits_{i=1}^n d_ic_i\right)\)

例7:错排问题(已知 \(D_1=0,D_2=1\),求 \(D_n=\left(n-1\right)\left(D_{n-1}+D_{n-2}\right)\)

解:考虑把 \(D_n\)\(D_{n-1}\) 绑定起来,则 \(D_n-nD_{n-1}=-D_{n-1}+\left(n-1\right)D_{n-2}=-\left(D_{n-1}-\left(n-1\right)D_{n-2}\right)\)。设 \(S_n=D_n-nD_{n-1}\),则 \(S_2=1\)\(S_n=\left(-1\right)^n\)。所以 \(D_n=nD_{n-1}+\left(-1\right)^n\),按照上述的推导过程,令 \(D_0=D_1-\left(-1\right)^1=1\);则上述的 \(d_n=\frac1{n!}\),进而 \(D_n=n!\left(1+\sum\limits_{i=1}^n\frac{\left(-1\right)^i}{i!}\right)=n!\left(\sum\limits_{i=0}^n\frac{\left(-1\right)^i}{i!}\right)\)

二、有限微积分(The Calculus of Finite Differences)

某些时候形如 \(\sum\limits_{i=a}^b f_i\) 的形式容易使人联想到 \(\int_a^b f\left(x\right)dx\),这启发我们在序列上寻找微积分的一些性质。类似函数中的微分算子 \(Df\left(x\right)=\frac{D\left(x+\Delta x\right)-D\left(x\right)}{\Delta x}\),我们可以在序列 \(f\) 上定义其他一些算子。定义移位算子 \(E:f_x\rightarrow f_{x+1}\),差分算子 \(\Delta\)\(E-I\)(其中 \(I\) 为恒等算子,\(\forall f,I:f_x\rightarrow f_x\))(\(\Delta f_x\rightarrow f_{x+1}-f_x\))。同理可定义 \(E^i:f_x\rightarrow f_{x+i}\)\(\nabla=I-E^{-1}\)\(\nabla:f_x\rightarrow f_x-f_{x-1}\)),\(\Delta^i=\left(E-I\right)^i=\sum\limits_{j=0}^i \left(-1\right)^{i-j}E^j\binom ij\)\(i\) 阶差分)(\(\Delta^i:f_x\rightarrow\sum\limits_{j=0}^i\left(-1\right)^{i-j}f_{x+j}\binom ij\))。

设序列 \(g\) 为序列 \(f\) 的差分序列(\(g_x=\Delta f_x\)),则 \(\sum\limits_{i\le n}g_i=f_n,\sum\limits_{i=a}^b g_i=f_{b+1}-f_a\)

例8:求 \(\sum\limits x^{\underline n}\)

对于序列 \(x^{\underline n}\),有 \(\left(x+1\right)^{\underline n}-x^{\underline n}=\prod\limits_{i=0}^{n-1}\left(x+1-i\right)-\prod\limits_{i=0}^{n-1}\left(x-i\right)=\left(\prod\limits_{i=0}^{n-2}\left(x-i\right)\right)\left(\left(x+1\right)-\left(x-n+1\right)\right)=n\prod\limits_{i=0}^{n-2}\left(x-i\right)=nx^{\underline{n-1}}\)。这个形式和 \(\left(x^n\right)'=nx^{n-1}\) 很类似。(而 \(\Delta 2^x=2^x\)\(\left(e^x\right)'=e^x\) 又很相似)同理可证 \(\nabla x^{\overline n}=nx^{\overline{n-1}}\)。考虑 \(x^{\underline n}\)\(n<0\) 时的意义。由于 \(\frac{x^{\underline n}}{x^{\underline{n-1}}}=x-n+1,x^{\underline 0}=1\),故 \(x^{\underline{-n}}=\frac1{\prod\limits_{i=1}^n \left(x+i\right)}\)。此时 \(n<0\) 时,\(\Delta x^{\underline n}=\left(x+1\right)^{\underline n}-x^{\underline n}=\frac1{\prod\limits_{i=1}^{-n}\left(x+1+i\right)}-\frac1{\prod\limits_{i=1}^{-n}\left(x+i\right)}=\frac1{\prod\limits_{i=2}^{-n+1}\left(x+i\right)}-\frac1{\prod\limits_{i=1}^{-n}\left(x+i\right)}=\frac{x+1}{\prod\limits_{i=1}^{-n+1}\left(x+i\right)}-\frac{x+1-n}{\prod\limits_{i=1}^{-n+1}\left(x+i\right)}=n\frac1{\prod\limits_{i=1}^{-n+1}\left(x-i\right)}=nx^{\underline{n-1}}\),仍然满足 \(n>0\)\(\Delta x^{\underline n}\) 的式子。同理 \(\forall n\in\Z,\nabla x^{\overline n}=n\left(x+1\right)^{\overline{n-1}}\)

然后考虑求和。由 \(\Delta x^n=nx^{n-1}\) 可得 \(\int x^n=\frac1{n+1}x^{n+1}\);按照类似的思路可得 \(\sum\limits x^{\underline n}=\frac 1{n+1}\left(x+1\right)^{\underline{n+1}}\)

例9:求 \(\sum\limits_{k=0}^n k^2\)

解:考虑 \(k^2=k\left(k-1\right)+k\),则 \(\sum\limits_{k=0}^n k^2=\left(\sum\limits_{k=0}^n k^{\underline 2}\right)+\left(\sum\limits_{k=0}^n k^{\underline 1}\right)=\frac 13\left(n+1\right)^{\underline 3}+\frac 12\left(n+1\right)^{\underline 2}=\frac 13\left(n+1\right)n\left(n-1\right)+\frac 12\left(n+1\right)n=\frac 16n\left(n+1\right)\left(2\left(n-1\right)+3\right)=\frac 16n\left(n+1\right)\left(2n+1\right)\)

同理,由于 \(k^z=\sum\limits_{i=0}^zS\left(z,i\right)k^{\underline i}\)(其中 \(S\left(z,i\right)\)第二类斯特林数,表示将 \(n\) 个两两不同的元素,划分为 \(k\) 个互不区分的非空子集的方案数。考虑组合意义,\(k^{\underline i}=i!\binom ki\),则 \(k^z\) 为将 \(k\) 个两两不同的元素划分至 \(z\) 个两两不同的可以为空的子集内的方案数,\(S\left(z,i\right)i!\binom ki\) 即为选择 \(i\) 个非空子集,将 \(k\) 个元素放入 \(i\) 个子集中,子集两两区分的方案数),\(\sum\limits_{k=0}^n\left(\sum\limits_{i=0}^z a_ik^i\right)\) 也可以拆成 \(\sum\limits_{k=0}^n\left(\sum\limits_{i=0}^z\left(a_i\left(\sum\limits_{j=0}^i S\left(i,j\right)k^{\underline j}\right)\right)\right)\) 进行计算。

1. 分部求和(Summation by Parts)

分部求和的名字来源于分部积分。

差分算子 \(\Delta\) 满足 \(\Delta kf_x=k\Delta f_x\)\(\Delta\left(f_x+g_x\right)=\left(\Delta f_x\right)+\left(\Delta g_x\right)\)。考虑乘法的时候 \(\Delta \left(f_xg_x\right)=f_{x+1}g_{x+1}-f_xg_x=f_{x+1}g_{x+1}-f_xg_{x+1}+f_xg_{x+1}-f_xg_x=g_{x+1}\left(f_{x+1}-f_x\right)+f_x\left(g_{x+1}-g_x\right)\),故 \(\Delta \left(fg\right)=Eg\Delta f+f\Delta g\),进而有 \(f\Delta g=\Delta\left(fg\right)-Eg\Delta f,\sum\limits f\Delta g=fg-\sum\limits Eg\Delta f\)

例10:求 \(\sum\limits_{k=0}^n k2^k\)

解:考虑 \(\Delta 2^x=2^x\),所以 \(x2^x\) 可以看成 \(x\Delta 2^x\),然后求和即为 \(\left(n+1\right)2^{n+1}-\sum\limits_{k=0}^n 2^{k+1}=\left(n+1\right)2^{n+1}-2^{n+2}+2=\left(n-1\right)2^{n+1}+2\)

例11:求 \(\sum\limits_{k=1}^n H_k\)(其中 \(H_x\) 为调和级数,也就是 \(\sum\limits_{i=1}^x\frac 1i\)

解:设 \(g_x=x\)\(f_x=H_x\),则

\[\begin{aligned}\sum\limits_{k=1}^n H_k&=\sum\limits_{k=1}^n f_k\Delta g_k\\&=\left(f_{n+1}g_{n+1}-f_1g_1\right)-\sum\limits_{k=1}^ng_{k+1}\left(f_{k+1}-f_k\right)\\&=\left(n+1\right)H_{n+1}-1-\sum\limits_{k=1}^n\left(k+1\right)\frac 1{k+1}\\&=\left(n+1\right)\left(H_{n+1}-1\right)\end{aligned} \]

例12:求 \(\sum\limits_{k=1}^n \binom kmH_k\),其中 \(m\) 为常数

解:设 \(\Delta g_x=\binom xm\)\(f_x=H_x\),考虑 \(\binom{x+1}{m+1}-\binom x{m+1}=\binom xm\),则 \(g_x=\binom x{m+1}\)。代入上式得:

\[\begin{aligned}\sum\limits_{k=1}^n \binom kmH_k&=\sum\limits_{k=1}^n f_k\Delta g_k\\&=\left(f_{n+1}g_{n+1}-f_1g_1\right)-\sum\limits_{k=1}^ng_{k+1}\left(f_{k+1}-f_k\right)\\&=\binom{n+1}{m+1}H_{n+1}-\binom 1{m+1}-\sum\limits_{k=1}^n\binom{k+1}{m+1}\frac 1{k+1}\\&=\binom{n+1}{m+1}H_{n+1}-\binom 1{m+1}-\frac1{m+1}\sum\limits_{k=1}^n\binom km\\&=\binom{n+1}{m+1}H_{n+1}-\binom 1{m+1}-\frac 1{m+1}\binom{n+1}{m+1}+\frac 1{m+1}\binom 1{m+1}\end{aligned} \]

考虑 \(\binom 1{m+1}\)\(\frac 1{m+1}\binom 1{m+1}\) 这两项。如果 \(m=0\) 则两项均为 \(1\),否则两项均为 \(0\)。所以上式还可以化简为 \(\binom{n+1}{m+1}\left(H_{n+1}-\frac 1{m+1}\right)\)

2. 牛顿级数(Newton Representation)


引入:泰勒展开

考虑使用某个多项式逐步逼近某个函数的过程。设该多项式为 \(f\left(x\right)=\sum\limits_{i=0}^n a_ix^i\),则 \(Df\left(x\right)=\sum\limits_{i=0}^{n-1} a_{i+1}\left(i+1\right)x^i\)。此时可以使用在该函数上某个点的若干阶导数以逼近该函数。

例如取 \(x=0\) 时的无穷阶导数时,\(f\left(0\right)=\sum\limits_{i=0}^n a_i0^i=a_0=0!a_0\)\(Df\left(0\right)=\sum\limits_{i=1}^n a_ii^{\underline 1}0^{i-1}=1!a_1\)\(D^2f\left(0\right)=\sum\limits_{i=2}^n a_ii^{\underline 2}0^{i-2}=2!a_2\),依次类推可得 \(D^kf\left(0\right)=k!a_k\),反推得该多项式为 \(\sum\limits_{i=0}\frac{D^if\left(0\right)}{i!}x^i\)


使用下降幂时,\(x^{\underline i}-\left(x-1\right)^{\underline i}\) 比使用普通幂时 \(x^i-\left(x-1\right)^i\) 更方便表示。考虑使用形如 \(f\left(x\right)=\sum\limits_{i=0}b_ix^{\underline i}\) 的形式以代替上述的 \(\sum\limits_{i=0} a_ix^i\)。显然我们可以从高到低唯一地确定 \(b\) 的每一项。先考虑 \(\Delta^kx^{\underline n}=\Delta^{k-1}nx^{\underline{n-1}}=\Delta^{k-2}n\left(n-1\right)x^{\underline{n-2}}=\cdots=n^{\underline k}x^{\underline{n-k}}\),进而 \(\Delta^kx^{\underline k}=k!\)。此时 \(\Delta^kf\left(0\right)=\sum\limits_{i=k}b_ii^{\underline k}0^{\underline{i-k}}=b_ii!\)。进而对于某个 \(f\),我们可以使用形如 \(\sum\limits_{i=0}\frac{\Delta^if\left(0\right)}{i!}x^{\underline i}\) 以逼近 \(f\left(x\right)\),称为多项式的牛顿级数。

三、容斥和反演

posted @ 2022-12-08 18:03  Fran-Cen  阅读(97)  评论(0编辑  收藏  举报