杜教BM递推板子
Berlekamp-Massey 算法用于求解常系数线性递推式
#include<bits/stdc++.h>
typedef std::vector<int> VI;
typedef long long ll;
typedef std::pair<int, int> PII;
const ll mod = 1000000007;
ll powmod(ll a, ll b) {
ll res = 1;
a %= mod;
assert(b >= 0);
for(; b; b >>= 1) {
if(b & 1)
res = res * a % mod;
a = a * a % mod;
}
return res;
}
ll _, n;
namespace linear_seq {
const int N = 10010;
ll res[N], base[N], _c[N], _md[N];
std::vector<ll> Md;
void mul(ll *a, ll *b, int k) {
for (int i = 0; i < k + k; i++)
_c[i] = 0;
for (int i = 0; i < k; i++)
if (a[i])
for (int j = 0; j < k; j++)
_c[i + j] = (_c[i + j] + a[i] * b[j]) % mod;
for (int i = k + k - 1; i >= k; i--)
if (_c[i])
for (int j = 0; j < ((int)(Md).size()); j++)
_c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod;
for (int i = 0; i < k; i++)
a[i] = _c[i];
}
int solve(ll n, VI a, VI b) {
ll ans = 0, pnt = 0;
int k = ((int)(a).size());
assert(((int)(a).size()) == ((int)(b).size()));
for (int i = 0; i < k; i++)
_md[k - 1 - i] = -a[i];
_md[k] = 1;
Md.clear();
for (int i = 0; i < k; i++)
if (_md[i] != 0)
Md.push_back(i);
for (int i = 0; i < k; i++)
res[i] = base[i] = 0;
res[0] = 1;
while ((1ll << pnt) <= n)
pnt++;
for (int p = pnt; p >= 0; p--) {
mul(res, res, k);
if ((n >> p) & 1) {
for (int i = k - 1; i >= 0; i--)
res[i + 1] = res[i];
res[0] = 0;
for (int j = 0; j < ((int)(Md).size()); j++)
res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod;
}
}
for (int i = 0; i < k; i++)
ans = (ans + res[i] * b[i]) % mod;
if (ans < 0)
ans += mod;
return ans;
}
VI BM(VI s) {
VI C(1, 1), B(1, 1);
int L = 0, m = 1, b = 1;
for (int n = 0; n < ((int)(s).size()); n++) {
ll d = 0;
for (int i = 0; i < L + 1; i++)
d = (d + (ll)C[i] * s[n - i]) % mod;
if (d == 0)
++m;
else if (2 * L <= n) {
VI T = C;
ll c = mod - d * powmod(b, mod - 2) % mod;
while (((int)(C).size()) < ((int)(B).size()) + m)
C.push_back(0);
for (int i = 0; i < ((int)(B).size()); i++)
C[i + m] = (C[i + m] + c * B[i]) % mod;
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else {
ll c = mod - d * powmod(b, mod - 2) % mod;
while (((int)(C).size()) < ((int)(B).size()) + m)
C.push_back(0);
for (int i = 0; i < ((int)(B).size()); i++)
C[i + m] = (C[i + m] + c * B[i]) % mod;
++m;
}
}
return C;
}
int gao(VI a, ll n) {
VI c = BM(a);
c.erase(c.begin());
for (int i = 0; i < ((int)(c).size()); i++)
c[i] = (mod - c[i]) % mod;
return solve(n, c, VI(a.begin(), a.begin() + ((int)(c).size())));
}
};
int main() {
int t;
scanf("%d", &t);
while(t--) {
scanf("%lld", &n);
std::vector<int>v = {
1, 1, 0, 3, 0, 3,
5, 4, 1, 9, 1, 6,
9, 7, 2, 15, 2, 9,
13, 10, 3, 21, 3, 12
};
//至少8项,越多越好。
printf("%lld\n", linear_seq::gao(v, n - 1) % mod);
}
}
数据大时都改为 long long
若mod不为质数,则需替换 powmod ,并将BM中的 d*powmod(b, mod-2)
改为 powmod(d, b)
void exgcd(ll a, ll b, ll &x, ll &y) {
if (!b)
x = 1, y = 0;
else
exgcd(b, a % b, y, x), y -= x * (a / b);
}
ll inv(ll a, ll p) {
ll x, y;
exgcd(a, p, x, y);
return(x + p) % p;
}
VI prime, g;
void getPrime() {
ll qw = mod;
for(ll i = 2; i * i <= qw; i++) {
if(qw % i == 0)
prime.pb(i);
while(qw % i == 0)
qw /= i;
}
if(qw > 1)
prime.push_back(qw);
}
ll powmod(ll fz, ll fm) {
ll ret = 1ll;
ll cnt[5] = {0};
for(int k = 0; k < prime.size(); k++) {
if(fz % prime[k] == 0) {
while(fz % prime[k] == 0) {
fz /= prime[k];
cnt[k]++;
}
}
}
ret = fz % mod;
for(int k = 0; k < prime.size(); k++) {
if(fm % prime[k] == 0) {
while(fm % prime[k] == 0) {
fm /= prime[k];
cnt[k]--;
}
}
}
if(fm > 1)
ret = (ret * inv(fm, mod)) % mod;
for(int k = 0; k < prime.size(); k++)
for(int kk = 1; kk <= cnt[k]; kk++)
ret = (ret * prime[k]) % mod;
return ret;
}