C++11 实现生产者消费者双缓冲

基础的生产者消费者模型,生产者向公共缓存区写入数据,消费者从公共缓存区读取数据进行处理,两个线程访问公共资源,加锁实现数据的一致性。

通过加锁来实现

 1 class Produce_1 {
 2 public:
 3     Produce_1(std::queue<int> * que_, std::mutex * mt_) {
 4         m_mt = mt_;
 5         m_que = que_;
 6         m_stop = false;
 7     }
 8     void runProduce() {
 9         while (!m_stop) {
10             std::this_thread::sleep_for(std::chrono::seconds(1));
11             std::lock_guard<std::mutex> lgd(*m_mt);
12             m_que->push(1);
13             std::cout << "Produce_1 produce 1" << std::endl;
14         }
15     }
16     void join() {
17         m_trd->join();
18         m_trd.reset();
19     }
20     void start() {
21         m_trd.reset(new std::thread(std::bind(std::mem_fun(&Produce_1::runProduce), this)));
22     }
23     void stop() {
24         m_stop = true;
25     }
26 private:
27     std::mutex * m_mt;
28     std::queue<int> * m_que;
29     volatile bool m_stop;
30     std::shared_ptr<std::thread> m_trd;
31 };
32 
33 
34 /*
35 *单缓冲一个同步队列 效率较低
36 */
37 class Consume_1 {
38 public:
39     Consume_1(std::queue<int> * que_, std::mutex * mt_) {
40         m_mt = mt_;
41         m_que = que_;
42         m_stop = false;
43     }
44 
45     void runConsume() {
46         while (!m_stop) {
47             std::this_thread::sleep_for(std::chrono::seconds(1));
48             std::lock_guard<std::mutex> lgd(*m_mt);
49             if (!m_que->empty()) {
50                 m_que->pop();
51             }
52             std::cout << "Consume_1 consume" << std::endl;
53         }
54     }
55     void join() {
56         m_trd->join();
57         m_trd.reset();
58     }
59     void start() {
60         m_trd.reset(new std::thread(std::bind(std::mem_fun(&Consume_1::runConsume), this)));
61     }
62     void stop() {
63         m_stop = true;
64     }
65 private:
66     std::mutex * m_mt;
67     std::queue<int> * m_que;
68     volatile bool m_stop;
69     std::shared_ptr<std::thread> m_trd;
70 };

 

通过条件变量来实现

 1 typedef struct Mutex_Condition{
 2     std::mutex mt;
 3     std::condition_variable cv;
 4 }Mutex_Condition;
 5 
 6 class Produce {
 7 public:
 8     Produce(std::queue<int> * que_, Mutex_Condition * mc_) {
 9         m_que = que_;
10         m_mc = mc_;
11         m_stop = false;
12     }
13     void join() {
14         m_trd->join();
15         m_trd.reset();
16     }
17     void produce(int enter) {
18         std::lock_guard<std::mutex> lgd(m_mc->mt);
19         m_que->push(enter);
20         m_mc->cv.notify_one();
21     }
22 
23     void runProduce() {
24         while (!m_stop) {
25             std::this_thread::sleep_for(std::chrono::seconds(1));
26             produce(1);
27             std::cout << "Produce Thread produce 1 " << std::endl;
28         }
29     }
30 
31     void start() {
32         m_trd.reset(new std::thread(std::bind(std::mem_fun(&Produce::runProduce), this)));
33     }
34     void stop() {
35         m_stop = true;
36     }
37 
38 private:
39     std::queue<int> * m_que;
40     Mutex_Condition * m_mc;
41     std::shared_ptr<std::thread> m_trd;
42     volatile bool m_stop;
43 };
44 
45 
46 class Consume {
47 public:
48     Consume(std::queue<int> * que_, Mutex_Condition * mc_) {
49         m_que = que_;
50         m_mc = mc_;
51         m_stop = false;
52     }
53     void join() {
54         m_trd->join();
55         m_trd.reset();
56     }
57     void consume() {
58         std::unique_lock<std::mutex> lgd(m_mc->mt);
59         while (m_que->empty()) {
60             int i = 0;
61             m_mc->cv.wait(lgd);
62         }
63         m_que->pop();
64         std::cout << "Consume Thread consume " << std::endl;
65     }
66     void runConsume() {
67         while (!m_stop) {
68             std::this_thread::sleep_for(std::chrono::seconds(1));
69             consume();
70         }
71     }
72     void start() {
73         m_trd.reset(new std::thread(std::bind(std::mem_fun(&Consume::runConsume), this)));
74     }
75     void stop() {
76         m_stop = true;
77     }
78 
79 private:
80     std::queue<int> * m_que;
81     Mutex_Condition * m_mc;
82     std::shared_ptr<std::thread> m_trd;
83     volatile bool m_stop;
84 
85 };

 

二、生产者消费者-双缓冲

一个公共缓存区,由于多线程访问的锁冲突较大,可以采取双缓冲手段来解决锁的冲突

双缓冲的关键:双缓冲队列的数据交换

1)生产者线程不断的向生产者队列A写入数据,当队列中有数据时,进行数据的交换,交换开始启动时通过条件变量通知交换线程来处理最先的数据交换。

2)数据交换完成后,通过条件变量通知消费者处理数据,此时交换线程阻塞到消费者数据处理完成时通知的条件变量上。

3)消费者收到数据交换后的通知后,进行数据的处理,数据处理完成后,通知交换线程进行下一轮的双缓冲区的数据交换。

要点:

生产者除了在数据交换时,其余时刻都在不停的生产数据。

数据交换队列需要等待消费者处理数据完成的通知,以进行下一轮交换。

消费者处理数据时,不进行数据交换,生产者同时会不断的生产数据,消费者需要等待数据交换完成的通知,并且发送消费完成的通知给交换线程

 

 使用条件变量的版本实现

 

  1 typedef struct Mutex_Condition{
  2     std::mutex mt;
  3     std::condition_variable cv;
  4 }Mutex_Condition;
  5 
  6 class Produce_1 {
  7 public:
  8     Produce_1(std::queue<int> * que_1, std::queue<int> * que_2, Mutex_Condition * mc_1 , Mutex_Condition * mc_2) {
  9         m_read_que   = que_1;
 10         m_writer_que = que_2;
 11         m_read_mc    = mc_1;
 12         m_writer_mc  = mc_2;
 13         m_stop       = false;
 14 
 15     }
 16     void runProduce() {
 17         while (!m_stop) {
 18             std::this_thread::sleep_for(std::chrono::microseconds(20 * 1000));
 19             std::lock_guard<std::mutex> lgd(m_writer_mc->mt);
 20             m_writer_que->push(1);
 21             m_writer_mc->cv.notify_one();
 22             std::cout << "m_writer push" << std::endl;
 23         }
 24         
 25     }
 26     void join() {
 27         m_trd->join();
 28         m_trd.reset();
 29     }
 30     void start() {
 31         m_trd.reset(new std::thread(std::bind(std::mem_fun(&Produce_1::runProduce), this)));
 32     }
 33     void stop() {
 34         m_stop = true;
 35     }
 36 private:
 37     Mutex_Condition * m_read_mc;
 38     Mutex_Condition * m_writer_mc;
 39     std::queue<int> * m_read_que;
 40     std::queue<int> * m_writer_que;
 41     volatile bool m_stop;
 42     std::shared_ptr<std::thread> m_trd;
 43 };
 44 
 45 
 46 class Consume_1 {
 47 public:
 48     Consume_1(std::queue<int> * que_1, std::queue<int> * que_2, Mutex_Condition * mc_1,Mutex_Condition * mc_2,Mutex_Condition * switch_mc) {
 49         m_read_que    = que_1;
 50         m_writer_que  = que_2;
 51         m_read_mc     = mc_1;
 52         m_writer_mc   = mc_2;
 53         m_stop        = false;
 54         m_switch_mc = switch_mc;
 55     }
 56 
 57     void runConsume() {
 58         while (!m_stop) {
 59             while (true) {
 60                 std::unique_lock<std::mutex> ulg(m_read_mc->mt);
 61                 while (m_read_que->empty()) {
 62                     m_read_mc->cv.wait(ulg);
 63                 }
 64                 //deal data
 65                 //std::lock_guard<std::mutex> ulg(m_read_mc->mt);
 66                 while (!m_read_que->empty()) {
 67                     m_read_que->pop();
 68                     std::cout << "m_read_queue pop" << std::endl;
 69                 }
 70                 m_switch_mc->cv.notify_one();
 71             }
 72         }
 73     }
 74     void join() {
 75         m_trd->join();
 76         m_trd.reset();
 77     }
 78     void start() {
 79         m_trd.reset(new std::thread(std::bind(std::mem_fun(&Consume_1::runConsume), this)));
 80     }
 81     void stop() {
 82         m_stop = true;
 83     }
 84 private:
 85     Mutex_Condition * m_read_mc;
 86     Mutex_Condition * m_writer_mc;
 87     Mutex_Condition * m_switch_mc;
 88     std::queue<int> * m_read_que;
 89     std::queue<int> * m_writer_que;
 90     volatile bool m_stop;
 91     std::shared_ptr<std::thread> m_trd;
 92 };
 93 void que_switch_trd(std::queue<int> * read_que, std::queue<int> * writer_que, Mutex_Condition * read_mc, Mutex_Condition * writer_mc,Mutex_Condition * switch_mc) {
 94     while (true) {
 95         {
 96             std::unique_lock<std::mutex> ulg(writer_mc->mt);
 97             while (writer_que->empty()) {
 98                 writer_mc->cv.wait(ulg);
 99             }
100             std::lock_guard<std::mutex> ulg_2(read_mc->mt);
101             std::swap(*read_que, *writer_que);
102             std::cout << "switch queue" << std::endl;
103             if (!read_que->empty()) {
104                 read_mc->cv.notify_one();
105             }
106         }
107         std::unique_lock<std::mutex> ulg_2(switch_mc->mt);
108         while (!read_que->empty()) {
109             switch_mc->cv.wait(ulg_2);
110         }
111     }
112 }
113 int main(){
114 
115     Mutex_Condition mc_1;
116     Mutex_Condition mc_2;
117     Mutex_Condition mc_3;
118     std::queue<int> que_1;
119     std::queue<int> que_2;
120 
121     Produce_1 produce_1(&que_1, &que_2, &mc_1, &mc_2);
122     Consume_1 consume_1(&que_1, &que_2, &mc_1, &mc_2,&mc_3);
123 
124     std::thread trd(std::bind(&que_switch_trd, &que_1, &que_2, &mc_1, &mc_2,&mc_3));
125     produce_1.start();
126     consume_1.start();
127     
128     produce_1.join();
129     consume_1.join();
130     trd.join();
131 
132     return 0;
133 }

 

 

 

使用互斥锁的实现

 1 #include<mutex>
 2 #include<thread>
 3 #include<queue>
 4 #include<iostream>
 5 #include<chrono>
 6 
 7 class DBQueue{
 8 public:
 9     void push(int i_) {
10         std::lock_guard<std::mutex> lock(m_mt);
11         std::cout << "write_que push " << i_ << std::endl;
12         m_write_que.push(i_);
13     }
14     void swap(std::queue<int> & read_que) {
15         std::lock_guard<std::mutex> lock(m_mt);
16         std::swap(m_write_que,read_que);
17         std::cout << "switch swap" << std::endl;
18     }
19 private:
20     std::queue<int> m_write_que;
21     std::mutex m_mt;
22 };
23 void produce(DBQueue * que) {
24     while (true) {
25         std::this_thread::sleep_for(std::chrono::microseconds(20*1000));
26         que->push(1);
27     }
28 }
29 void consume(DBQueue * que) {
30     std::queue<int> read_que;
31     while (true) {
32         std::this_thread::sleep_for(std::chrono::microseconds(20*1000));
33         if (read_que.empty()) {
34             que->swap(read_que);
35             //xxoo
36             while (!read_que.empty()) {
37                 std::cout << "read_que pop" << std::endl;
38                 read_que.pop();
39             }
40         }
41     }
42 }
43 int main()
44 {
45     DBQueue que;
46     std::thread trd_1(std::bind(&produce, &que));
47     std::thread trd_2(std::bind(&consume, &que));
48     trd_1.join();
49     trd_2.join();
50     return 0;
51 }

 两个版本的区别 sleep的区别,sleep处理的时效性较差,不加sleep,cpu占用率又比较高,所以条件变量是比较好的选择。

posted @ 2017-11-09 23:06  karllen  阅读(5211)  评论(0编辑  收藏  举报